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Abstract

Multisensory neurons in the deep superior colliculus (SC) show response en-

hancement to crossmodal stimuli that coincide in time and space. However, mul-

tisensory SC neurons respond to unimodal input as well. It is thus legitimate to

ask why not all deep SC neurons are multisensory or, at least, develop multisensory

behavior during an organism’s maturation. The novel answer given here derives

from a signal-detection theory perspective. A Bayes’ Ratio model of multisensory

enhancement is suggested. It holds that deep SC neurons operate under the Bayes’

Ratio rule which guarantees optimal performance, i.e., it maximizes the probability

of target detection while minimizing the false alarm rate. It is shown that opti-

mal performance of multisensory neurons vis-à-vis crossmodal stimuli implies, at

the same time, that modality-specific neurons will outperform multisensory neu-

rons in processing unimodal targets. Thus, only the existence of both multisensory

and modality-specific neurons allows optimal performance when targets of one or

several modalities may occur.
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INTRODUCTION

In a possibly hostile environment with stimuli occurring at various positions in space

and time, in order to survive an individual must constantly discriminate between signals

relevant for action planning (“targets”) and signals that demand no immediate response

(“non-targets”). Separate sensory channels process stimuli from different modalities, but

in order to succeed in the discrimination task the individual must integrate the information

coming from different modalities in an optimal way. In an orienting task, saccadic reaction

time (the time to initiate an eye movement) to a target stimulus is facilitated when the

stimulus is composed of several modalities rather than a single one. This multisensory

interaction effect is larger than predicted by a simple probability summation mechanism,

and it is most conspicuous if the stimulus elements coincide in time and space (e.g.,

Frens, Van Opstal, & Van der Willigen, 1995; Colonius & Diederich, 2004; for a review

see Diederich & Colonius, 2004).

Evidence for multisensory interaction at the neural level has been documented in a se-

ries of studies on the superior colliculus (SC), a midbrain structure involved in the control

of eye movements (Stein & Meredith, 1993). Multisensory neurons in deep SC of anes-

thetized cats (Stein, Magalhães-Castro, & Kruger, 1976; Meredith & Stein, 1986a,b) and

monkeys (Wallace, Wilkinson, & Stein, 1996) show an enhanced response to particular

combinations of visual, auditory, and tactile stimuli paralleling the spatial-temporal rules

observed in behavioral studies. Similar results have recently been obtained for recordings

from unanesthetized cats by Wallace, Meredith, & Stein (1998) and from the awake be-

having monkey by Bell, Corneil, Meredith, & Munoz (2001) and by Frens & Van Opstal

(1998).

Although the multisensory integration properties of deep SC neurons facilitate the

detection of crossmodal targets, not all deep SC neurons are multisensory. In the cat,

about half of deep SC neurons are multisensory, in the monkey only about one-quarter.

Moreover, the percentage of neurons responsive to visual-auditory stimuli is about twice
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that of neurons responsive to visual-somatosensory stimulation, while about 9% have been

found to respond to all three modalities in the cat and 6% in the monkey (Wallace & Stein,

1996)1. Given that multisensory neurons do respond to unimodal input this raises the

issue why not all SC neurons are multisensory or, at least, develop multisensory response

behavior during an organism’s maturation? There have been several attempts to answer

this question, but none of them appears entirely satisfactory yet. This paper suggests

that one possible explanation for the existence of modality-specific SC neurons can be

given from a signal-detection theory perspective.

As mentioned above, an organism confronted with the task of discriminating targets

from non-targets should not only keep up a high rate of detecting targets but, at the same

time, must strive to minimize ”false alarms” to irrelevant non-target stimuli. This can

be achieved following a simple decision rule, the so-called Bayes’ Ratio rule: Given the

evidence from the afferent sensory input, decide that a target is present (rather than a

non-target) if the probability for a target is greater than the probability for a non-target,

otherwise vote for a non-target to be present. Most importantly, it can be shown that

any optimally adapted system maximizing the number of correct decisions (i.e., hits and

correct rejections) has to follow this decision rule (cf. Egan, 1975). We postulate that

the neural response is proportional to the probability to respond “Yes” computed under

the Bayes’ Ratio decision rule. While both bimodal (visual-auditory) and unimodal tar-

gets exist, the organism is not required to distinguish between different types of targets

but only between targets and non-targets. From these simple assumptions it is demon-

strated that optimal performance with both crossmodal and unimodal targets cannot be

accomplished with multisensory SC neurons alone. In fact, it turns out that optimal

performance of multisensory neurons vis-à-vis crossmodal stimuli implies, at the same

time, that modality-specific neurons will outperform multisensory neurons in processing

unimodal targets.

1Such estimates of proportions of multisensory cells are always fairly rough because it is difficult to

exclude the possibility that an experimenter may simply be using the wrong type of stimuli.
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For simplicity, we will only consider the bimodal (visual-auditory) case here, although

an extension to three or more modalities can be developed. The present model extends

the approach of Colonius & Diederich (2002) in that crossmodal targets are distinguished

from unimodal ones, which makes possible an answer to the title question.

THE BAYES RATIO MODEL OF MULTISENSORY

ENHANCEMENT

The notion that part of the saccadic response duration reflects an on-going decision pro-

cess in the SC (and other areas like the frontal eye fields) is discussed in many recent

contributions (e.g., Krauzlis, Liston, & Carell, 2004). Saccadic reaction times typically

lie in the range between 100 and 500 ms (e.g., Munoz & Schall, 2004). From single-unit

studies it is known that afferent delays to the SC take between 40 to 100 ms, while the SC

motor command (efferent processing) is carried out within 30 to 50 ms. “The fact that

saccades are not initiated as soon as theoretically possible based on known afferent and

efferent delays is presumed to reflect the time necessary to make decisions about where

to move the eyes in the event of competing alternatives” (Stanford, 2004, p. 49).

It should be noted that the model proposed here is computational, i.e., it purports

to describe the decision processes that are being made in generating a saccade, but its

physiological implementation is not at a level of detail as found in models that show,

e.g., how Bayesian probabilities can be computed in a network architecture (Rao, 2004).

The Bayes Ratio (BR) model is formulated as describing the function of a single deep SC

neuron, but an alternative implementation at the level of an entire cell assembly will be

considered in the discussion section.

After introducing some necessary notation, we will present the important concept of

the Bayes’ Ratio and the fundamental decision rule underlying our model.
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The Bayes’ Ratio Decision Rule

Visual and auditory afferent input to a deep SC neuron are represented by random vari-

ables V and A, respectively, taking on integer values 0, 1, 2, . . . These values are to be

interpreted as the number of neural impulses arriving at the deep SC in a (small) unit

interval of time. We first restrict the development to the unimodal (visual) case.

Let TV + denote the event that a visual target is present, while TV − denotes the occur-

rence of a (visual) non-target. Then P (Y es |TV +) stands for the conditional probability

to decide that a target is present if it is present (hit), while P (Y es |TV −) is the probability

to decide that a target is present when in fact only a non-target is present (false alarm).

In order to maximize the probability of a correct response,

P (C) = P (Y es |TV +) P (TV +) + [1 − P (Y es |TV −)]P (TV −), (1)

the following decision rule must be adopted in the unimodal visual case:

UNIMODAL DECISION RULE

If P (TV + |V = v) > P (TV − |V = v), then decide ”Yes”, otherwise decide ”No”.

In the signal detection theory literature, this is known as the “max-P(C)” rule2 (cf. Egan,

1975, p. 20–23). P (TV + |V = v) is the (Bayesian) posterior probability that a target is

present given afferent input V = v. It can be computed via the classic Bayes’ rule

P (TV + |V = v) =
P (V = v |TV +)P (TV +)

P (V = v)
, (2)

whenever the likelihood P (V = v |TV +), the a-priori target probability P (TV +), and the

input probability distribution P (V = v) are available.

Interestingly, however, decisions following the above max-P(C) rule can be made without

using the Bayes formula (2) explicitly. In fact, note that the inequality in the max-P(C)

2It is a special case of the “maximum-a-posteriori” (MAP) rule, see e.g. Rowe (2003).
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rule is equivalent to

P (TV + |V = v)

P (TV − |V = v)
=

P (TV +)

P (TV −)

P (V = v |TV +)

P (V = v |TV −)
> 1. (3)

The left-hand side is called Bayes’ Ratio and it is equal to the ratio of the a-priori prob-

abilities times the likelihood ratio L(v),

L(v) =
P (V = v |TV +)

P (V = v |TV −)
.

Thus, a Bayesian decision maker can be interpreted as using a form of likelihood-ratio

testing in which the likelihood ratio is adjusted for the prior probabilities (cf. Wickens,

2002). Under the max-P(C) rule a “Yes” decision is made whenever the Bayes’ Ratio is

larger than one. Transforming Eq. (3), this rule is equivalent to:

UNIMODAL DECISION RULE

If L(v) >
P (TV −)

P (TV +)
then decide ”Yes”, otherwise decide ”No”.

Considered as a function of the random variable V , the likelihood ratio L(V ) is itself a

random variable, and this leads to the conditional probability to decide ”Yes”, given a

target is present (hit rate):

P (Y es |TV +) = P

(

L(V ) >
P (TV −)

P (TV +)

∣

∣

∣

∣

TV +

)

. (4)

Computation of the hit rate requires specification of the probability distributions

P (V = v |TV +) and P (V = v |TV −)

which we will assume to be Poisson (see below).

The Bayes’ Ratio (BR) Model

The BR model casts an individual deep SC neuron as a computational unit that processes

afferent input and prior target probabilities and that calculates a response in form of the
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mean spike rate. Specifically, we postulate that the neural response is proportional to

the probability to respond “Yes” computed under the max-P(C) rule. This guarantees a

maximum number of correct decisions (i.e., hits and correct rejections) when targets and

non-targets are to be discriminated (see Egan, 1975).

Let TV +A+, TV +A−, and TV −A+ denote the event that a bimodal target, a unimodal

visual target, or a unimodal auditory target, respectively, occurs in the receptive field of

a deep SC neuron. At any point in time, at most one type of target signal may appear, or

the signal may be a non-target, denoted TV −A−. The prior probabilities of these events,

in obvious notation, are π++, π+−, π−+, and π−−, and have to add up to one.

The probability of a correct response that is being maximized in the BR model then is

P (C) = P (Y es |TV +A+ or TV +A− or TV −A+) P (TV +A+ or TV +A− or TV −A+) + (5)

(1 − P (Y es |TV −A−)) P (TV −A−),

generalizing Eq. (1). Note that for this maximization there is no requirement to distinguish

between different types of targets but only between targets and non-targets. For the

likelihood distributions we introduce the notation

f++(v, a) = P (V = v, A = a |TV +A+), f+−(v, a) = P (V = v, A = a |TV +A−), etc.

The max-P(C) rule for a multisensory SC neuron then is

BIMODAL DECISION RULE

If P (TV +A+ or TV +A− or TV −A+ |V = v, A = a) > P (TV −A− |V = v, A = a)

then decide ”Yes”, otherwise decide ”No”.

By simple algebra and using the above notation, the inequality is equivalent to

f++(v, a) π++ + f+−(v, a) π+− + f−+(v, a) π−+ > f−−(v, a) π−−

or, written as Bayes’ Ratio,

π++

π−−

f++(v, a)

f−−(v, a)
+

π+−

π−−

f+−(v, a)

f−−(v, a)
+

π−+

π−−

f−+(v, a)

f−−(v, a)
> 1 . (6)
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Extending the unimodal case, this Bayes’ ratio, considered as a function of the random

variables V and A, is again a random variable BR(V,A), say, where dependence on the

prior probabilities is suppressed to keep notation simple. The probability of a hit given a

bimodal target, for example, can be computed as

P (BR(V,A) > 1 | TV +A+) ,

while the probability of a false alarm would be

P (BR(V,A) > 1 | TV −A−) .

Similarly, the max-P(C) rule for a modality-specific visual SC neuron is

UNIMODAL DECISION RULE

If P (TV +A+ or TV +A− |V = v) > P (TV −A+ or TV −A− |V = v)

then decide ”Yes”, otherwise decide ”No”

since the auditory sensory input, A = a, is lacking. The corresponding Bayes’ ratio is

π++ g++(v) + π+− g+−(v)

π−+ g−+(v) + π−− g−−(v)
> 1 , (7)

where g++(v), g+−(v), etc. refer to the likelihood distributions P (V = v |TV +A+), P (V =

v |TV +A−), etc. For a modality-specific visual SC neuron, the probability of a hit given a

bimodal target and of a false alarm, e.g., are computed analogously from

P (BR(V ) > 1 | TV +A+) and P (BR(V ) > 1 | TV −A+ or TV −A−) , respectively,

where BR(V ) is the Bayes’ ratio corresponding to Eq. (7). Actual computation of these

probabilities, however, requires specification of the likelihood distributions. We will only

consider the Poisson case here.
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The Poisson Bayes Ratio model

Unimodal Stimulation Case

The most common distribution to account for the random number of spikes occurring in

a fixed unit time interval is the Poisson distribution with mean λ+ > 0,

P (V = v |TV +) =
exp(−λ+)λv

+

v!
, (8)

and it is often seen as a reasonable first approximation (Tuckwell, 1989). For P (V =

v |TV −) we will assume a Poisson distribution as well, with mean λ−, and λ+ > λ−. The

hit rate in Eq. (4) then equals

P (Y es |TV +) = P

(

exp(λ− − λ+)

(

λ+

λ−

)V

>
P (TV −)

P (TV +)

∣

∣

∣

∣

TV +

)

= P (V > c |TV +),

where

c =

ln

(

P (TV −)
P (TV +)

)

+ λ+ − λ−

ln
(

λ+

λ−

) .

Thus, in this simple case the hit rate can be computed directly from the Poisson distri-

bution.

Bimodal Stimulation Case

For the multisensory SC neuron, we have to specify the bivariate Poisson distribution

for visual-auditory input (V,A) for each target-non-target condition. Although many

dependent bivariate Poisson models exist (e.g., Kocherlakota & Kocherlakota, 1992), we

confine discussion here to the independent Poisson case. Thus,

P (V = v, A = a |TV +A+) ≡ f++(v, a) =
exp(−λ+) λv

+

v!

exp(−µ+) µa
+

a!
, (9)

and

P (V = v, A = a |TV +A−) ≡ f+−(v, a) =
exp(−λ+) λv

+

v!

exp(−µ−) µa
−

a!
, (10)
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etc., where µ+ and µ− are the auditory target and non-target means, and λ+ > λ− and

µ+ > µ− . This conditional stochastic independence (CSI) assumption implies that the

visibility of a target indicates nothing about its audibility and vice versa.

For modality-specific visual SC neurons we assume

P (V = v |TV +A+) ≡ g++(v)

P (V = v |TV +A−) ≡ g+−(v)







=
exp(−λ+) λv

+

v!
(11)

and

P (V = v |TV −A+) ≡ g−+(v)

P (V = v |TV −A−) ≡ g−−(v)







=
exp(−λ−) λv

−

v!
. (12)

The likelihood functions for modality-specific auditory SC neurons are defined analo-

gously. Note that these definitions contain two more implicit assumptions. First, the

fact that the mean value parameters (the λs and µs) are the same for multisensory and

modality-specific SC neurons reflects the premise that under unimodal stimulation mul-

tisensory neurons receive just the same afferent input as the modality-specific neurons.

Note that it is not assumed that the mean values are the same throughout the entire SC.

There is a large variability among real neurons in their response characteristics, and the

specific parameter value for λ or µ is ascribed to a subpopulation of SC neurons tuned to

the same level of afferent input (see also discussion). Second, it is assumed that for the

modality-specific visual SC neurons the likelihood is the same whether or not an auditory

target is present, and vice versa. This context independence (CI) assumption seems very

innocuous because the modality-specific visual SC neuron has no auditory input channel

by definition.

It is now straightforward to write down the probability for a “Yes” response under the

various target-non-target conditions by inserting the likelihood functions into the Bayes’
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ratios. For a multisensory neuron the hit probability for a bimodal target, e.g., is

P (BR(V,A) > 1 | TV +A+) =

P

(

π++

π−−

exp(λ− − λ+)

(

λ+

λ−

)V

exp(µ− − µ+)

(

µ+

µ−

)A

+

π+−

π−−

exp(λ− − λ+)

(

λ+

λ−

)V

+
π−+

π−−

exp(µ− − µ+)

(

µ+

µ−

)A

> 1 | TV +A+

)

,

(13)

where the bivariate random variable (V,A) has distribution f++(v, a) from Eq. (9). Sim-

ilarly, for a modality-specific visual SC neuron the hit probability for a bimodal target,

e.g., is

P (BR(V ) > 1 | TV +A+) =

P

(

π++ + π+−

π−+ + π−−

exp(λ− − λ+)

(

λ+

λ−

)V

> 1 | TV +A+

)

, (14)

where random variable V has distribution g++(v) from Eq. (11). A derivation of the

explicit distribution of the Bayes’ ratio seems difficult in the bimodal case, however, so

we obtained various hit and false alarm rates through numerical simulation.

Comparing bimodal to unimodal performance

The performance of multisensory and modality-specific deep SC neurons under the Poisson

Bayes’ Ratio model is completely characterized by (i) the prior probabilities and (ii) the

Poisson parameters. Each data point was obtained by sampling pseudo-random numbers

(or pairs of numbers) from Poisson distributions and inserting the values into Eqs. (13)

or (14), respectively. The relative frequency the inequality was satisfied was taken as an

estimate of the corresponding probability.3

3The Mathematica c© programming system was used for the simulations. A sample size of n = 5, 000

yielded probability estimates sufficient for a precision of about 1%. For false alarm rates, sample size was

increased to N = 10, 000 for greater precision.
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It should be mentioned that in the formulation of the Bayes’ Ratio decision rule used

here the cost for false alarms and correct rejections have been set equal. An extension to

unequal weighting could easily be established if suggested by the decision situation. The

results most pertinent to the title question come from comparing the hit and false alarm

rates between modality-specific and multisensory neurons when only a unimodal target

is present. In this case, modality-specific neurons can be shown to exhibit performance

superior to multisensory neurons under various conditions. This unimodal-neuron superi-

ority depends, in particular, on the difference between the detectability of the unimodal

(visual and auditory) targets and on the prior probability of bimodal targets. We consider

both factors in turn.

Unimodal detectability in the Poisson case is defined similar to the familiar d ′ measure

of signal detection theory (cf. Egan, 1975):

DV (λ+, λ−) =
λ+ − λ−

(λ+ ∗ λ−)1/4
(15)

for visual targets, and DA(µ+, µ−) for auditory targets is defined analogously. The first

case study illustrates that the hit rate of a multisensory neuron does not depend on the

absolute values of the means but rather on the detectability of the unimodal targets.

Specifically, it suggests that unimodal-neuron superiority shows up when a unimodal

target occurs in the modality of lower detectability.

Case Study 1

Setting π++ = 0.45, π−− = 0.5, π+− = π−+ = 0.025, λ+ = 9, and λ− = 5 we varied both

µ+ and µ− such that DA(µ+, µ−) was constant and equal to 3.11. Note that visual de-

tectability remained constant: DV (9, 5) = 1.54. For a large range of µ+ and µ− values the

hit rate of a multisensory neuron for a unimodal visual target, P (BR(V,A) > 1 | TV +A−),

was about constant at a value of 0.35 (see Fig. 1).

[Figure 1]
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The hit rate for a modality-specific visual neuron for the same parameter values,

P (BR(V ) > 1 | TV +A−), was equal to 0.40 demonstrating some degree of unimodal-

neuron superiority.

The next case study investigates how unimodal-neuron superiority depends on the

difference between unimodal target detectabilities. Note that unimodal-neuron superiority

here refers to a higher hit rate (and/or lower false alarm rate) of a visual modality-specific

neuron compared to a multisensory neuron when a visual target and an auditory non-

target are presented. Interchanging the roles of the visual and the auditory modality

would lead to analogous results.

Case Study 2

Two different sets of priors are considered: the first as before with target probabilities

equal to non-target probabilities, the second with rather small target probabilities (.05 for

bimodal, .025 for unimodal targets). Visual detectability is kept constant at DV = 1.54

with λ+ = 9 and λ− = 5 as before. Auditory detectability is varied from zero (last row of

Table 1) to DA = 4.74 (first row of Table 1) by increasing µ+ from 5 to 20, with µ− = 5

throughout.

First consider the case of relatively high target probability (π++ = 0.45, π−− = 0.5,

π+− = π−+ = 0.025). The hit rate for a modality-specific visual neuron, UV +, equals 0.40,

as above. Increasing auditory detectability depresses the multisensory SC neuron hit rate

for visual targets, BV +A− (Table 1, 2nd column), down to a value of .23, thus exhibiting

unimodal-neuron superiority. For decreasing auditory detectability, unimodal-superiority

quickly vanishes and transforms into a clear advantage for the multisensory neuron (.85

vs. .40).

[Table 1]

On the other hand, the multisensory SC neuron hit rate for unimodal auditory targets,

BV −A+ (4th column), shows the opposite behavior: it is large when BV +A− is low and
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vice versa. Note that at the same time the hit rate for the bimodal target BV +A+ (3rd

column) decreases from .99 down to .84 when auditory detectability diminishes. The

5th column (BV −A−) contains the corresponding false alarm rates for the multisensory

neuron. It starts at .24 when auditory detectability is zero, and goes down to .01 for

the highest auditory detectability, whereas the false alarm rate for a modality-specific

visual neuron with the same (visual) parameter values equals UV − = .24. Thus, there is

a multisensory-neuron superiority for the false alarm rates.

Columns 6-9 of Table 1 refer to the case of low target probabilities (π++ = 0.05,

π−− = 0.9, π+− = π−+ = 0.025). Modality-specific visual neuron hit rate is 50% lower

now (UV + = .20). The corresponding bimodal hit rate for visual targets, BV +A−, is at .32

for zero auditory detectability (last row) and decreases to .14 with increasing auditory

detectability. Thus, unimodal-neuron superiority occurs again in line with the case of high

target probabilities. Behavior of multisensory SC neuron hit rates for bimodal targets

(BV +A+, column 7) and for auditory targets (BV −A+, column 8) parallels the previous

case. On the other hand, as a consequence of the small prior target probabilities the false

alarm rate for the modality-specific visual neuron is very low (.004) and the corresponding

bimodal false alarm rates do not exceed .01 for most levels of auditory detectability.4

The following picture emerges from this example. For the multisensory SC neuron,

the hit rate for bimodal targets is high as long as visual or auditory detectability are not

too low, but the exact level depends on the prior probabilities as well. Most importantly,

its hit rate for a unimodal (say, visual) target gets severely depressed and becomes lower

than the modality-specific neuron hit rate if visual and auditory unimodal detectabilities

differ substantially and, simultaneously, the target happens to occur in the modality

with lower detectability (the visual, in this case). Thus, the BR model predicts that, if

unimodal visual and auditory detectabilities differ in a crossmodal stimulus combination,

the multisensory SC neuron‘s responses to unimodal stimulation should also differ: high

4Given that the accuracy of our simulations is not smaller than 1%, the values observed do not differ

from each other significantly
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auditory detectability leads to a low visual hit rate and a high auditory hit rate, and vice

versa. There is a clear unimodal-neuron superiority effect for the hit rates. For the false

alarm rates, the effect depends on the prior probabilities for the targets. For relatively

high target probabilities (left part of Table 1) the depression of the multisensory neuron

hit rate for visual targets goes along with a decrease of its false alarm rate, whereas for

low prior target probabilities (right part of Table 1) the false alarm rates stay below 1%

under all conditions.

Case Study 3

This study further investigates the effect of different sets of prior target probabilities. The

rows in Table 2 are arranged by non-target probabilities (π−−, 4th column) decreasing

from .99 to .2. Fixing the mean values and, thereby, visual and auditory detectability

at λ+ = 9, µ+ = 14, λ− = µ− = 5, we computed the probability to detect a unimodal

visual target both for a multisensory (5th column) and for a modality-specific visual (6th

column) SC neuron and the corresponding false alarm rates (columns 7 and 8) for each

combination of prior probabilities.

[Table 2]

Clearly, the priors have a strong effect on both hit rates: the latter increase when non-

target prior probability decreases, as one would expect, and there is clear unimodal-neuron

superiority in the hit rate for most sets of priors. For the false alarm rates, the effects are

less conspicuous. In particular, when non-target probability is above .90, the false alarm

rates stay below one percent for both types of neurons and, if any, there is a slight tendency

for smaller false alarm rates in the modality-specific neuron. This reverses into a clear

advantage for the multisensory neuron only when non-target probability falls below 50%.

Moreover, for constant non-target prior probability π−−, the unimodal-neuron superiority

(with respect to the hit rates) tends to be larger when the prior bimodal target probability

π++ exceeds the unimodal priors π+− and π−+. Finally, when the unimodal priors differ,
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the multisensory SC neuron detection rate is much more affected than the modality-

specific SC neuron detection rate if the less likely unimodal target occurs. For example,

with π++ = .40, the bimodal rate goes down from .53 to .27 if visual prior probability

drops from .9 to .01, while the unimodal visual rate only drops from .40 to .34. This

is in line with the observation in the previous case study in that the performance of

the multisensory neuron is more affected by differences between the unimodal conditions

(priors or detectabilities).

DISCUSSION

The question why some but not all deep SC neurons are multisensory is a legitimate

one given that multisensory neurons are also responsive to unimodal stimulation. One

could argue that multisensory neurons are especially important when weak stimuli from

several modalities co-occur because multisensory response enhancement measured at the

single cell level is most dramatic under these conditions (“inverse effectiveness”, cf. Stein

& Meredith, 1993), and that modality-specific neurons mostly process above-threshold

unimodal stimuli. Note, however, that while this line of reasoning supports the existence

of multisensory neurons, it does not explain why a large number of neurons in an organ-

ism remain modality-specific over their lifetime. Moreover, the hypothesis that cell type

(multisensory vs. modality-specific) implies the tuning to specific stimulus intensities is

not easy to reconcile with the observation that there is large variability in the response

characteristics of the entire population of deep SC cells.

The present investigation suggests a more specific solution to the issue from a decision-

theoretic point of view, i.e. the Bayes’ Ratio decision rule which maximizes the percent

of correct decisions when targets are to be discriminated from non-targets. Taking for

granted that deep SC neurons are in that sense optimally adapted to discriminate be-

tween targets (stimuli that need immediate orientation or attention) and non-targets, we

were able to show that optimal performance of multisensory neurons vis-à-vis crossmodal
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stimuli implies, at the same time, that modality-specific neurons will outperform mul-

tisensory neurons in detecting unimodal targets. Specifically, if an auditory stimulus is

better detectable than a visual, then the performance of the multisensory neuron vis-à-

vis the unimodal visual stimulus is severely degraded even though its performance with

respect to auditory, or bimodal, stimuli can still be very high. In the terminology of

decision thresholds, if the multisensory neuron weights the auditory input highly (since

it is very detectable), it is difficult to exceed the decision threshold if the auditory input

happens to be low. Note that this behavior of multisensory neurons is not due to some

particular assumptions but simply follows from the Bayes’ Ratio decision rule. Thus, the

existence of modality-specific visual neurons is quite essential and, interchanging the role

of the visual and the auditory modality the same holds true for modality-specific auditory

neurons.

Neurophysiological implementation

Although the BR model is developed at the computational level without specifying the

exact neural underpinnings, it is important to point out the neural structures that are

supposed be involved in the computational process. Application of the Bayes Ratio rule

requires the computation of the probability that the likelihood ratio is larger than the

ratio of the prior probabilities of a target and a non-target, given the afferent input (see

Eq. 4). For a given afferent input (a realization v of the random variable V , say) the

SC neuron has to compute the likelihood ratio L(v) and to determine whether or not it

exceeds the ratio of priors. The former would lead to a “Yes” response, the latter to a

“No” response by the neuron. In order to generate the final output, i.e., a neural response

proportional to the probability to respond “Yes” computed under the BR rule, the SC

neuron must average its response over small unit time intervals. Note that the suggestion

to conceive of the firing rate of an SC neuron as an estimate of the (log) likelihood that

a target is present has been made previously by Carpenter & Williams (1995).
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An implementation of the BR model at the level of an entire cell assembly is possible.

We define as “cell assembly” a subset of multisensory and modality-specific deep SC

neurons tuned to the same intensity level, i.e., to certain fixed means of afferent bimodal

input λ and µ. Each cell element of the assembly delivers a “Yes” or “No” vote based

on the outcome of the likelihood ratio computation as before. The final computational

step of estimating the probability to respond “Yes”, however, will now take place at the

level of the cell assembly by evaluating the relative frequency of “Yes” responses in the

cell assembly. Note that this way the unimodal advantage is preserved at the assembly

level because an estimate of the probability of a “Yes” response given a unimodal (visual)

target will be better in the presence of modality-specific neurons with their higher relative

frequency of hits rather than being based on the multisensory cells’ hit rate only.

It is an open question at which neural site the computation of the relative frequencies

would be accomplished. Several alternatives exist. Using a two-alternative forced choice

task, Krauzlis & Dill (2002) report that buildup neurons in the rostral SC exhibit higher

activity for target than for non-target stimuli. In a similar vein, Horwitz & Newsome

(2001) reported a neural correlate of the process of discriminating the direction of motion

in the activity of SC neurons. “Rather than discharge only after a target had been selected,

these neurons appeared to participate in, or at least reflect, the process of accumulating

sensory evidence for this process.” (Stanford, 2004, p. 49). Alternatively, the frontal eye

fields (FEF) may be involved as well. The FEF projects to SC, which projects to the

thalamus, which then projects back to the FEF. The transmission time of these pathways

is 2 to 3 ms allowing enough time for SC and FEF to mutually influence the state of the

other (see Munoz & Schall, 2004, for references).

Finally, multisensory integration properties of most SC neurons as well as observed

orientation behavior are mediated by influences from two parietal cortical areas, the an-

terior ectosylvian sulcus (AES) and the rostral aspect of the lateral suprasylvian sulcus

(rLS) (Jiang, Wallace, Jiang, Vaughan, & Stein, 2001; Jiang, Jiang, & Stein, 2002).
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When cortical activation is eliminated, multisensory SC neurons lose their enhancement

facility to crossmodal combinations and their responses parallel that for unimodal input.

“Whether or not activity in SC [during decision time] is essential or simply reflects the

state of computations carried out in cortex is difficult to know. [...] In principle, an

experiment that combines the right behavioral task, microstimulation parameters, and

microstimulation timing might distinguish the SC‘s respective contributions to sensori-

motor decision-making and motor command formation.” (Stanford, 2004, p. 49). At least

as far as multisensory integration is concerned, it has been shown through ortho- and an-

tidromic stimulation that the SC is a site of multisensory integration and not only reflects

multisensory integration processes in cortical (AES) multisensory neurons (Wallace et al.,

1993).

Empirical testability

The last points raise the question to what degree the Bayes Ratio’ model may be subjected

to empirical testing. It should be possible to condition an animal to an environment in

which priors are set by the experimenter at the start of the recording session. Changing

these well-defined priors by modifying the environment in a controlled way, the brain

should be able to adapt to these changes and this would allow to test predictions of the

model as exemplified in Table 2. Similarly, it may be possible to estimate the detectabil-

ity of various uni- and crossmodal stimuli by recording the afferent input. Although

thousands of neurons are necessary to produce a saccade, the averaged signal from single

neurons in SC and FEF have been shown to be sufficient to specify whether and when

a saccade will occur (Munoz & Schall, 2004, p. 74). Thus, it might also be possible, in

principle, to test predictions for hit and false alarm rates as exemplified in Table 1.

Intriguingly, recent studies of multisensory effects under different types of lesions may

offer an additional testing opportunity for the unimodal advantage prediction of the BR

model even at the behavioral level. Jiang et al. (2002) showed that cryogenic blockade of
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AES or rLS disrupted the multisensory enhancement of orientation responses to visual-

auditory stimuli in cats. These data were very similar to the effects of AES or rLS

deactivation on individual multisensory SC neurons (Jiang et al., 2001). Under cortical

deactivation the responses of these neurons to crossmodal stimuli were indistinguishable

from those of modality-specific neurons. Thus, if the effect of deactivation is functionally

equivalent to an increase of the proportion of modality-specific SC neurons, then the

unimodal advantage should show up in the orienting behavior of the cats under unimodal

auditory stimulation. Unfortunately, there are two obstacles to an immediate test with

the data sets currently available. First, the cats were trained to consider only visual

stimuli as targets and, second, the intensity levels of the stimuli were at about the same

(low) level. Nevertheless, the responses of the individual multisensory SC neurons under

cryogenic cortical blockade would present a case in point.5 In a similar vein, studies like

the one by Burnett et al. (2004), where excitotoxic lesions of the SC presumably had

a preferential impact on multisensory neurons thus modifying the relative proportion of

modality-specific neurons, might be used to test for a unimodal advantage in the visual-

auditory orientation task.

Concluding Remarks

Building a model from decision-theoretic principles is certainly superior to a purely de-

scriptive approach and, recently, there is a strong tendency in neural modeling to appeal

to Bayesian and related rules of decision making (e.g., Glimcher, 2003; Ernst & Banks,

2002). In Anastasio, Patton, & Belkacem-Boussaid (2000) it is proposed that multisen-

sory deep SC neurons compute the posterior probability that a target is present given

stochastic afferent input. In an information theoretic analysis of that model Patton et al.

(2002) show that input of an additional modality may indeed increase target information,

5Fig. 3 in Jiang et al. (2001) even suggests a unimodal auditory advantage of the SC neuron under

cortical deactivation.
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but only if input received from the initial modality does not completely reduce uncertainty

about the presence of a target. There are some obvious correspondences between this ap-

proach and the Bayes‘ Ratio model presented here. An important difference is the explicit

introduction of a signal-detection theoretic perspective in the BR model, the postulate

of an optimal decision rule for hits and false alarms, and the distinction between uni-

and crossmodal targets that lead to the specific predictions concerning unimodal-neuron

superiority. In a more recent development, Anastasio & Patton (2003) suggest a neural

network model with a two-stage unsupervised learning algorithm that produces multisen-

sory enhancement. Interestingly, in their information theoretic analysis of the model the

authors are able to show that target information gain is highest when the SC contains

between 10 and 50% multisensory units only. Although starting from somewhat different

perspectives, this coincides with the conclusion of the BR model that modality-specific

SC neurons are a necessary part of an optimally adapted organism.
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Tables
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UV + = 0.40 UV − = 0.24 UV + = 0.20 UV − = 0.007

µ+ BV +A− BV +A+ BV −A+ BV −A− BV +A− BV +A+ BV −A+ BV −A−

20 .23 .99 .99 .01 .14 .99 .99 .004

19 .24 .99 .99 .01 .13 .99 .99 .004

18 .25 .99 .99 .02 .15 .99 .99 .005

17 .28 .99 .99 .02 .16 .99 .97 .007

16 .30 .99 .99 .03 .16 .98 .96 .006

15 .32 .99 .99 .04 .16 .97 .93 .007

14 .35 .99 .97 .05 .16 .95 .88 .008

13 .41 .99 .94 .07 .17 .93 .82 .009

12 .45 .98 .88 .08 .19 .89 .73 .011

11 .50 .97 .79 .09 .21 .82 .58 .012

10 .58 .95 .68 .12 .22 .72 .41 .012

9 .66 .93 .52 .15 .26 .62 .24 .011

8 .71 .89 .35 .16 .27 .49 .09 .010

7 .76 .86 .24 .18 .27 .40 .02 .008

6 .80 .85 .12 .20 .28 .33 .01 .007

5 .85 .84 .05 .24 .32 .32 .01 .009

Table 1:
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π++ π+− π−+ π−− BV +A− UV + BV −A− UV −

.009 .0005 .0005 .99 .01 .04 .001 < .001

.001 .0045 .0045 .99 .024 .02 .001 < .001

.002 .014 .014 .97 .05 .07 .003 .001

.026 .002 .002 .97 .03 .12 .002 .003

.026 .001 .003 .97 .025 .12 .003 .002

.026 .003 .001 .97 .036 .125 .002 .002

.01 .01 .01 .97 .05 .07 .001 < .001

.03 .01 .01 .95 .08 .13 .004 .002

.001 .0245 .0245 .95 .08 .07 .003 < .001

.01 .04 .04 .91 .15 .20 .01 .006

.05 .025 .025 .90 .16 .20 .008 .007

.20 .025 .025 .75 .22 .53 .02 .07

.05 .10 .10 .75 .35 .41 .035 .031

.35 .025 .025 .60 .29 .69 .035 .13

.40 .025 .025 .55 .32 .67 .042 .13

.40 .09 .01 .50 .53 .79 .07 .24

.40 .01 .09 .50 .27 .67 .055 .14

.45 .025 .025 .50 .37 .80 .05 .24

.25 .125 .125 .50 .57 .68 .09 .13

.75 .025 .025 .20 .58 .94 .13 .56

Table 2:
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Table captions

Table 1:

Hit and false alarm rates of a multisensory SC neuron (BV +A−, BV +A+, BV −A+, BV −A−)

as a function of auditory target intensity µ+. Top row contains hit and false alarm rates

for a visual SC neuron. Left part of the table presents data for prior values π++ = 0.45,

π−− = 0.5, π+− = π−+ = 0.025, right part for π++ = 0.05, π−− = 0.9, π+− = π−+ = 0.025.

Mean values were set to λ+ = 9, λ− = 5, and µ− = 5.

Table 2:

Hit and false alarm rates of multisensory neuron (BV +A−, BV −A−) and modality-specific

neuron (UV +A−, UV −) to unimodal visual target, under various sets of prior probabilities

π++, π+−, π−+, and π−−.
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Figure 1:
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Figure captions

Figure 1: Curve of constant auditory detectability; for parameter values, see text. The

numbers at the arrows indicate the nearly constant hit rate of a multisensory neuron for

a unimodal visual target for different (µ−, µ+) combinations.


