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1. Introduction
This paper presents a comprehensive theory of how

subjective distances among stimuli belonging to a contin-
uous n-dimensional stimulus space (such as a space of
parametrized colors, spatial locations, or geometric shapes)
can be computed from the degree of discriminability of
each stimulus from its infinitesimally close neighboring
stimuli. We term such a metric Fechnerian, because it ap-
pears that, in the case of unidimensional stimulus con-
tinua (n � 1), this idea, rather than the cumulation of finite
“subjectively equal just-noticeable differences,” consti-
tutes the core of Fechner’s original theory (Fechner, 1851,
1860, 1877, 1887). To the extent our interpretation of Fech-
ner’s work is correct, this paper refines and expands (to
stimulus spaces of arbitrary dimensionality) the oldest
theoretical construct in scientific psychology.

1.1. Background. In his book of rejoinders to his nu-
merous critics, Fechner (1877, Postscript) compares his
theory to the biblical tower of Babel: as the latter was not
built because its builders could not agree on how to build
it, so the edifice of his theory will not be torn down be-
cause his critics will not agree on how to tear it down. In

spite of Stevens’s derision (Fechner’s “edifice,” he writes,
was never torn down, it was merely abandoned; Stevens,
1975, p. 8), the history of psychophysics, prominently in-
cluding the period following Stevens’s work, proves Fech-
ner’s prophesy remarkably accurate. It would suffice to
look through numerous critical commentaries on the re-
cent papers by Krueger (1989), Lockhead (1992), and Mur-
ray (1992) or through recent monographs by Baird (1997),
Laming (1997), and Link (1992) to see that Fechner’s ideas
are still very much in the center of psychophysical contro-
versies. The most prominent controversy is focused on
Fechner’s logarithmic “psychophysical law” versus its com-
petitors, but this is one issue that concerns us very little
in this paper. The focus of the paper is instead on the es-
sential logic of the Fechnerian scaling, one of the criteria
of the essential logic being its extendability to multi-
dimensional stimulus spaces. The traditionally considered
“psychophysical laws” have little relevance beyond uni-
dimensional stimulus continua, and, even there, our ap-
proach is consistent with the possibility that a correct com-
putation of Fechnerian distances for different continua
and different experimental conditions leads to different
“psychophysical laws.”

The aspect of Fechner’s legacy that is of primary im-
portance for this paper is his proposal (or our interpreta-
tion thereof ) to measure the subjective distance between
stimuli a and b by “moving” a stimulus x from a to b and
“cumulating” along the way the degree of discriminability
of x from its neighboring stimuli (see Figure 1). (Fechner,
as most psychophysicists after him, preferred to fix a at
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the value of the absolute threshold [or any physical value
below it, say, zero] and think of the subjective distance
from this point to b as the magnitude of the “sensation”
caused by b. This approach, however, is only applicable
to unidimensional continua with a leftmost zero, because
of which it is not considered in this paper.) Fechner’s be-
lief that the subjective distances computed by means of
the cumulation of a local discriminability measure are
more basic than those measured by any other means is
easily understandable: The ability to perceptually distin-
guish different stimuli is arguably the only one shared by
all perceiving organisms, and it is prerequisite for all
other cognitive abilities.

The specific choice of the local discriminability func-
tion and the way of its cumulation proposed by Fechner
have been criticized throughout the history of psycho-
physics, by the contemporaries of Fechner’s and ours alike.
The traditional understanding (analyzed later in detail) is
that Fechner equates the discriminability of a stimulus x
from its neighbors with the reciprocal of the finite just-
noticeable difference (JND) with respect to x and inte-
grates this value from a to b to obtain the subjective dis-
tance between these stimuli. This procedure is believed to
rest on Fechner’s postulate that stimuli separated by equal
numbers of JNDs are subjectively equidistant. One line
of criticism (described later) points out that the logic of
this procedure is internally inconsistent (Elsass, 1886;
Luce & Edwards, 1958). The prevailing view among mod-
ern psychophysicists (Falmagne, 1971, 1985; Luce & Ga-
lanter, 1963) is that this procedure should be forsworn in
favor of a related but different scaling problem: how to as-
sign numerical values to unidimensional stimuli so that
these values are equidistant for stimuli discriminated with
equal probabilities (this is referred to as the “Fechner prob-
lem,” although Guilford, 1954, p. 39, attributes the under-

lying probability-distance principle to Fullerton and Cat-
tell). Below, we propose an interpretation of Fechner’s the-
ory that embeds it in our general theory of Fechnerian scal-
ing (in stimulus spaces of arbitrary dimensionality) and
frees it from the internal inconsistencies found in it by
Fechner’s critics. According to this interpretation, Fech-
ner’s scaling theory is much more general than the mod-
ern solution of the Fechner problem: Fechnerian distances
may very well violate the probability-distance principle.

Another line of criticism points out that Fechner’s mea-
surement procedure fails a crucial empirical test of inter-
nal consistency (Krueger, 1989; Laming, 1997; Stevens,
1936). Refer to Figure 2, in which two-dimensional stim-
uli (e.g., tones varying in intensity and frequency, or
flashes varying in intensity and duration) that fall on the
same curve are judged to have equal values of some sub-
jective attribute, l (loudness for tones, or brightness for
flashes). Thus, the l values of a1 and b1 equal the l values
of a2 and b2, respectively. According to the traditional
interpretation of Fechnerian scaling, this implies that the
number of the just-noticeable increments along the phys-
ical dimension v that are required to get one from a1 to
a2 must be the same as that for getting one from b1 to b2.
Actual measurements (by Riesz, 1933, for tones; by Nach-
mias & Steinman, 1965, for light flashes) do not accord
with this prediction. A detailed analysis presented in this
paper shows, however, that this prediction is based on as-
sumptions that do not follow from the logic of Fechnerian
scaling. In fact, the Fechnerian theory of unidimensional
continua does not apply to the situation in question at all:
One needs a more general theory of subjectively unidimen-
sional discriminations among physically multidimen-
sional stimuli. Once this theory is constructed, it becomes
apparent that the Fechnerian distances in Figure 2 cannot
be computed along the vertical lines and that, by construc-

Figure 1. The logic of unidimensional Fechnerian scaling: subjective distance between
a and b is the integral of a measure of the discriminability of x from its neighboring stimuli.
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tion, the correctly computed Fechnerian distances from
a1 to a2 and from b1 to b2 cannot be anything but equal.

Concerning the proposed interpretation of Fechner’s
theory, we do not wish to imitate those who tend to find
hidden depths in any sufficiently old text. By modern
standards, Fechner was less than mathematically rigor-
ous, and his writings are too voluminous and complex to
dismiss the traditional interpretation of his theory with
certainty. We cite evidence, however, that seems to indi-
cate that our interpretation is closer to the intended
meaning of what Fechner called his “psychophysical ed-
ifice.” If so, our use of the term Fechnerian in describing
the subjective metric developed in this paper is justified.

Our interpretation of Fechner’s theory accords with
Pfanzagl’s (1962), Creelman’s (1967), and Krantz’s (1971)
defense of Fechner’s “differential formula” and, espe-
cially, the formulation by M. F. Norman mentioned in
Krantz’s paper as a personal communication. Among pre-
cursors of our generalization of Fechnerian scaling to
multidimensional stimulus spaces, one can list Helmholtz’s
(1891) and Schrödinger’s (1920) differential-geometric
analysis of color metrics, as well as a recent work by Levin
(in press).

1.2. Intuitive framework of the theory. To construct
a general theory of Fechnerian scaling, applicable to stim-
ulus spaces of arbitrary dimensionality, one has to an-
swer two fundamental questions. The first one is how to
compute the discriminability of a stimulus from its neigh-
boring stimuli (which includes the question of what the
precise meaning of “neighboring” is). The second ques-
tion is how to cumulate this local discriminability mea-
sure along a transition path leading in the stimulus space

from one stimulus to another (which includes the ques-
tion of how one chooses these transition paths in multi-
dimensional spaces). The intuitive points underlying our
answers to these questions, and thereby our construction
of the Fechnerian metric, are as follows.

(A) Refer to Figure 3. Any two n-dimensional stimuli
x and y are associated with a discrimination probability

ψx(y) � Prob{“y is different from x”}.

Nonidentical stimuli x and y, however close, can be dis-
criminated with a probability greater than the probability
of discriminating x from itself:

ψx(y) � Prob{“y is different from x”}

> Prob{“x is different from x”} � ψx(x).

(B) Refer to Figure 4. The infinitesimally small differ-
ence of discrimination probabilities,

ψx(x + dx) � ψx(x),

can be considered a “psychometric value” (an operation-
alist substitute for “subjective value”) of the infinitesimally
small difference between stimuli x and x + dx.

(C) Refer to Figure 5. Any sufficiently smooth path
(curve) connecting two finitely distant stimuli a and b in
the stimulus space can be viewed as a concatenation of
infinitesimally small stimulus changes along this path. The
corresponding psychometric values of these changes can
be integrated and considered this path’s “psychometric
length.” The length of the shortest path connecting a and
b can be considered the Fechnerian (subjective) distance
between these two points.

Figure 2. Isosensitivity curves in two dimensions (h, v) discussed in Sections 1.1 and 6.2.
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Figure 3. Possible appearance of a two-dimensional psychometric function �x(y) � Prob{“y is different
from x”}; �x(y) exceeds �x(x) for any y ≠ x.

Figure 4. A small segment of the cross section of the psychometric function �x(y) of Figure 3 through its
minimum (at y � x) along a direction u. As s → 0+ , the distance between x and x + us (horizontal arrows) cor-
responds to the psychometric distance between �x(x) and �x(x + us) (vertical arrows).
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This is merely an intuitive framework: It is to be elab-
orated in many respects to form a comprehensive and
mathematically rigorous theory. Some of these elabora-
tions, briefly mentioned, are as follows.

(a) Psychometric functions ψx(y) need not be obtained
by direct same–different judgments. There are alternative
ways of obtaining functions interpretable as indicating
degree of discriminability. From a strictly operationalist
point of view, each procedure of computing ψx(y) may
lead to its own Fechnerian metric, in one and the same
stimulus space. Because of this, the qualifications used
above, “subjective” and “psychometric,” are relative, un-
less their equivalence across different judgment schemes is
established empirically. It is also possible to relate the
Fechnerian distances to unobservable “true” discrimina-
tion functions, about which it is assumed that the ob-
servable psychometric functions are their transforms af-
fected by certain “response bias” parameters. One of the
remarkable results established below is that, except for a
scaling constant, the Fechnerian distances are invariant
with respect to response bias changes for a wide class of
conceivable response bias models.

(b) The requirement that ψx(y) achieve its minimum at
y � x is not critical. It is sufficient to assume that any
psychometric function ψx(y) has a point of a global min-
imum, say, at y � x*, and that the relationship between
the reference stimuli x and the points of global minima
x* is one-to-one. The Fechnerian distance between two
points, a and b, is then defined as the Fechnerian distance

between the two points of minima, a* and b*, of the cor-
responding psychometric functions, ψa(y) and ψb(y). In
the important case (mentioned in the previous section)
when physically n-dimensional stimuli are discriminated
along a unidimensional subjective attribute, the Fechner-
ian distances are computed among (n � 1)-dimensional
hypersurfaces (lines, if n � 2) at which the psychometric
functions reach their minima.

(c) The physical distance between x + dx and x can be
presented as the (positive) infinitesimal ds in the repre-
sentation

x + dx � x + u ds, ds > 0,

which means that x + dx lies at a distance ds from x in a
direction u. The corresponding psychometric differential

ψx(x + dx) � ψx(x) � ψx(x + u ds) � ψx(x)

serves as a measure of discriminability (of x + u ds from
x) only if it is comeasurable with ds (i.e., has the same or-
der of infinitesimality, as explained in Section 2). In other
cases, such a measure is provided by a monotonic trans-
formation of this differential,

Φ[ψx(x + dx) � ψx(x)],

where Φ is assumed to be the same for all psychometric
functions ψx(y) and all directions u of the infinitesimal
change dx. Except for a scaling constant, this transfor-
mation is determined asymptotically uniquely (i.e.,
uniquely in the vicinity of zero, the only region where it

Figure 5. The subjective (or psychometric) length of a path connecting points a and b is obtained by integrat-
ing along the path the psychometric differential �x(x + us) � �x(x), s → 0 +, corresponding to the infinitesimally
small change from x to x + us along the tangent direction u. (In a more general case, the psychometric differen-
tial should be replaced with some fixed transformation thereof.)
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is needed). For simplicity and without much loss of gen-
erality, throughout most of the paper, the transformation
Φ is assumed to be a power function.

(d) The computation of Fechnerian distances is not pred-
icated on any assumptions about the global structure of
the psychometric functions ψx(y). One does not need even
such elementary assumptions as the symmetry,

ψx(y) � ψy(x),

or the continuity of ψx(y) at all points. Figure 6 provides an
exaggerated illustration of this point: The three contours
of the psychometric functions shown are all admissible.
It is assumed, however, that any psychometric function
has a point of a global minimum, and certain regularity
conditions are imposed on the shape of the psychomet-
ric functions in the vicinity of their global minima.

(e) The psychometrically “shortest” path connecting
two stimuli need not exist: The Fechnerian distance be-
tween a and b can be merely the greatest lower boundary
for the length of all paths connecting these stimuli. The
properties of the shape of the psychometric functions in
the vicinity of their minima guarantee the existence of
this greatest lower boundary.

(f ) The computation of Fechnerian distances is a prob-
lem of variational analysis. It leads to the differential-
geometric structure called the Finslerian geometry, the
more familiar Riemannian geometry being its special case.
(This paper, however, does not presuppose a prior knowl-
edge of variational calculus, differential geometry, or any
other branch of mathematics beyond standard calculus
of several variables.) It should be emphasized that the
Finslerian geometry is not assumed here for mathemati-
cal reasons, such as simplicity or generality, and certainly
not because the Riemannian metric appears to us too re-
strictive (see Section 7.3). In fact, the Finslerian geometry
in our work is not assumed at all, rather it follows from
the logic of computing the local discriminability from
the psychometric functions.

1.3. Epistemological status of Fechnerian scaling.
Fechnerian scaling is not a mathematical technique but an
empirical theory based on assumptions that may or may
not be true. It is not logically necessary that any two suf-

ficiently close stimuli are associated with a fixed dis-
crimination probability or that these probabilities form a
psychometric function with a global minimum (it is con-
ceivable, for example, that an observer would always judge
any two stimuli different). Nor is it necessary that the form
of the psychometric functions in the vicinity of their
minima has the properties postulated below. At the same
time, as these postulated properties relate to infinitesi-
mally small areas of psychometric functions, to falsify or
corroborate them, one would typically need a very large
experiment that may only be feasible for lower dimensional
stimulus spaces (perhaps only uni- or two-dimensional
ones). Moreover, even with a very large experiment involv-
ing, say, two-dimensional stimuli, one cannot probably
avoid the necessity of linking the differential properties
of the psychometric functions being tested with some
simplifying technical assumptions, thereby making the
attribution of a potential falsification dubious. This sit-
uation, however, seems to be typical for psychological
theories (see Dzhafarov, 1993).

In this paper, we avoid making such technical assump-
tions (e.g., parametric assumptions concerning the global
form of the psychometric functions), because we do not
believe that to introduce additional constraints with the
sole purpose of facilitating the empirical falsifiability of
a theory is good science: one needs compelling empirical
or mathematical reasons for doing so, and we presently
lack both. We see the main contribution of our work in the
conceptual clarity that it brings to any area of research
related to the intuitive notions of subjective metrics and
subjective spaces, thereby providing a solid conceptual
framework for interpreting empirical data and construct-
ing empirically falsifiable models. The analysis of the
Fechnerian distances between isosensitivity curves pre-
sented in Section 6.2 (mentioned earlier in the discussion
related to Figure 2) is one example of how the conceptual
clarity provided by our theory helps to resolve a long-
standing theoretical controversy and save a good deal of
experimental effort.

1.4. Structure of the paper. In Section 2, we analyze
the case of unidimensional stimulus continua and intro-
duce some of the theoretical language to be utilized later

Figure 6. Fechnerian scaling imposes no restrictions on the global structure of psychometric functions, except in
the infinitesimally small vicinity of their global minima. Shown are vertical cross sections of psychometric functions
through their global minima.
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in the general theory. Section 3 is central for this paper,
as it provides a comprehensive account of Fechnerian
scaling for arbitrary n-dimensional continuous stimulus
spaces. Some special cases of this theory are considered
in Section 4. In Section 5, we discuss the dichotomy of
“response bias” versus “true discriminability” and the
problem of consistency between the models defining this
dichotomy and Fechnerian scaling. In Section 6, we dis-
cuss the application of Fechnerian scaling to subjectively
unidimensional discriminations of multidimensional
stimuli. In Section 7, we outline possible generalizations
of Fechnerian scaling, explain why the Fechnerian met-
ric cannot be postulated to be Riemannian, and make
concluding remarks. The Appendix is essentially a series
of numbered endnotes containing technical comments and
proofs; in the main text, they are referred to as A1–A7.

2. Unidimensional Fechnerian Scaling
2.1. Traditional interpretation of Fechner’s ap-

proach. Fechner’s (1851, 1860, 1877, 1887) original
theory applies to stimuli that are measured on a single
physical continuum and linearly ordered along a “corre-
sponding” subjective dimension. The following is the gist
of the traditional presentation of Fechner’s theory in the
psychophysical literature (see, e.g., Baird, 1997; Luce &
Edwards, 1958).

Fechner’s theory (FT). Denoting stimulus magnitude
by x, it is postulated that there is a real-valued function
φ(x) (“sensation magnitude”) such that the subjective dis-
tance G(a, b) between two stimuli can be presented as

G(a, b) � | φ (b) � φ (a) |.

This is the subjective unidimensionality requirement, usu-
ally assumed tacitly. It is taken as an empirical fact that
for any stimulus x, one can find a stimulus x + ∆x (∆x > 0)
that is just-noticeably greater than x. The dependence of
∆x on x,

∆x � w(x),

is referred to as the Weber function. The subjective distance
∆φ between x and x + ∆x is postulated to be constant
across the stimulus continuum (Fechner’s postulate):

∆φ � c.

The two preceding equalities are combined into

� ,

because both ratios equal unity. Then, a mathematical aux-
iliary principle is invoked, according to which the finite
differences ∆x and ∆φ can be replaced by differentials.
This replacement yields Fechner’s differential formula
(Fundamentalformel )

c � dφ (x).

The subjective distance G(a, b) between two arbitrary
stimuli is computed by integration of the above,

This is Fechner’s Unterschiedsformel (the more familiar
Massformel being its special case, when a is the absolute
threshold).

The transition from the JNDs to differentials in FT 
is clearly unfounded and has been criticized by many. El-
sass (1886), Fechner’s contemporary, pointed out that 
the derivation is self-contradictory if the Weber law
holds,

w(x) � kx.

In this case, the “derivation” above results in Fechner’s
logarithmic law,

G(a, b) � log , a < b,

where c is supposed to be the constant size of the subjec-
tive difference between x and x � kx,

G(x, x � kx) � ∆φ (x) � c.

If, however, one computes G(x, x + kx) directly from the
logarithmic formula, one gets

G(x, x � kx) � log(1 � k) ≠ c.

Luce and Edwards (1958) provide a more general dem-
onstration of the self-contradictory nature of (what is tra-
ditionally considered to be) Fechner’s derivation, by point-
ing out that

generally cannot be a constant, contrary to Fechner’s
postulate.

Fechner’s critics also pointed out that the derivation
above does not take into account that the Weber function
w(x) is not unique. A traditional recommendation (see Fig-
ure 7) is to estimate w(x) by the distance

w(x, p) � γ �1
x ( p) � γ �1

x ( 1⁄ 2) � γ �1
x ( p) � x

between x (the median) and an arbitrary above-median
quantile of the psychometric function

γx( y) � Prob{“y is greater than x”}.

(For simplicity and, as is shown below, with no loss of gen-
erality, we assume here that the median of a psychometric
function equals the reference stimulus.) As there is no
justification for preferring one quantile level p to another,
the Weber functions should be viewed as depending on
both x and p. It is easy to check, however, that if the sub-
jective distance between two stimuli is computed as

then it would generally depend on p, and that, moreover,
the values of G(a, b) computed for two different values of

G a b c dx
w x pp a

b
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p would not generally be related to each other by any
function.

For these reasons, the prevailing opinion is that the en-
tire derivation associated with Fechner’s differential for-
mula should be dispensed with. Instead, it is suggested
(Falmagne, 1971, 1985; Krantz, 1971; Levine, 1970; Luce
& Galanter, 1963; Pfanzagl, 1962) that the Fechnerian
“sensation scale” φ(x) should be understood as a function
satisfying the functional equation

φ [x + w (x, p)] � φ (x) � g( p).

This equation formalizes the probability-distance prin-
ciple mentioned in Section 1.1, and it can be viewed as a
generalized version of Fechner’s postulate (because of
which Luce & Galanter, 1963, refer to it as the “Fechner
problem”): For any given p, the subjective difference
corresponding to the “with-probability-p-noticeable dif-
ference” w(x, p) is constant across the stimulus contin-
uum. A comprehensive algebraic investigation of this
functional equation can be found in Pfanzagl (1962) and,
especially, Falmagne (1985).

This approach to Fechnerian scaling, however, has a sur-
prising outcome, pointed out by Pfanzagl (1962): If a suf-
ficiently smooth solution φ(x) for the functional equation
representing the Fechner problem exists, then an expres-
sion closely resembling, if not identical to the rejected
differential formula of Fechner’s must hold. By differen-
tiating the functional equation above with respect to p at
p � 1⁄ 2, one gets

Denoting

and assuming that this quantity is finite and nonzero (i.e.,
that the median of the psychometric function is a regu-
lar point of increase, as in Figure 7), we have

dφ (x) � c .

We see that the modern reformulation of Fechnerian scal-
ing implies Fechner’s original differential formula, pro-
vided that w (x) in FT is interpreted as w�(x), the deriva-
tive of the Weber function w(x, p) (with respect to p at
p � 1⁄2) rather than the Weber function itself at a partic-
ular value of p. A similar point is made in Krantz (1971),
although there it is formulated and arrived at in an un-
necessarily complicated way.

Quite obviously, one can postulate the differential for-
mula even if the functional equation representing the
Fechner problem has no solution. The differential formula,
therefore, represents a more general approach and can be
introduced independently. A way of doing this can be de-
rived from a personal communication by M. F. Norman
reported in Krantz (1971). When modified to suit our pur-
poses, Norman’s formulation defines the Fechnerian sen-
sation scale φ (x) as satisfying1

φ[x � w(x, p)] � φ (x) � c( p � 1⁄ 2)

+ o{p � 1⁄ 2}, p → 1⁄ 2 (c > 0).

Put somewhat loosely, the equation states that the sub-
jective difference corresponding to the with probability-
p-noticeable difference w(x, p) is constant across the
stimulus continuum if p is infinitesimally close to 1⁄ 2.
Norman’s (modified) formulation is equivalent to

and it can be viewed as a mathematically rigorous version
of Fechner’s postulate. Fechner’s differential formula fol-
lows from this version of the postulate immediately (e.g.,
by L’Hopital’s rule), under appropriate smoothness as-
sumptions about the Weber function w(x, p).

The subjective equality of finite JNDs, w(x, p), then
becomes merely a statement of practical approximation
(or empirical estimation): For a fixed p � p0, if w(x, p0)
is sufficiently small, then

φ [x � w(x, p0)] � φ (x) ∝ ≈ c.

Now we can replace the self-contradictory derivation
(FT) with the following internally consistent theory of
how to impose the Fechnerian metric on a unidimen-
sional stimulus continuum.

Fechner’s theory (FT*). Stimulus magnitude x and sen-
sation magnitude φ(x) are understood as above. It is taken
as an empirical fact that for any stimulus x (within a suit-

φ [x � w(x, p0)] � φ(x)
���

( p0 � 1⁄ 2)
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Figure 7. Possible appearance of a unidimensional psychome-
tric function γx( y) � Prob{“y is greater than x”}. A value of the
Weber function w(x, p) � γ x

�1( p) � γ x
�1(1⁄2) is shown by the ar-

rows. The partial derivative w�(x) of the Weber function with re-
spect to p at p � 1⁄2 is reciprocal to the slope tan α of the psycho-
metric function at p � 1⁄2.
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ably chosen open interval) and any 0 < p < 1, one can
find a stimulus y � x � w(x, p) that is judged to be greater
than x with probability p; w(x, p) is referred to as the
Weber function. It is assumed that this function is con-
tinuously differentiable in both arguments (at least in the
vicinity of p � 1⁄ 2) and that

It is postulated that

where c is the same for all stimulus values (the infinites-
imal version of Fechner’s postulate). It follows that (e.g.,
by L’Hopital’s rule)

dφ (x) � c ,

Fechner’s differential formula. The subjective distance
G(a,b) between two arbitrary stimuli is obtained by in-
tegration of the above, yielding Fechner’s Unterschieds-
formel,

This integral is well defined under the smoothness con-
ditions imposed on w(x, p).

Clearly, Fechner did not present his theory in this form.
Several indications, however, convince us that the in-
tended meaning of Fechner’s (mathematically imperfect)
presentation was closer to FT* than to the traditional ac-
count (FT). We believe that Fechner did not think of his
differential formula as being derived (by means of an ad
hoc “mathematical auxiliary principle”) from a precise
law, such as Weber’s, relating finite differences in stimuli
to finite differences in sensations. Rather he thought of the
differential formula as a precise statement, and he thought
of Weber’s law as merely a finite-difference approxima-
tion. In his reply to the above-mentioned critique by Elsass
(1886), Fechner explicitly rejected the validity of equating
sensation differences with relative stimulus differences,

� ,

unless both ∆x and ∆φ are “very small” (Fechner, 1887,
p. 167). We understand this as saying that even if the left-
hand side of the equality above is a constant [e.g., even
if Weber’s law holds precisely, with w(x) � kx], the equal-
ity is not valid unless ∆x and ∆φ are (or closely approx-
imate) differentials. As argued convincingly by Scheerer
(1987), when Fechner developed his differential formula
in 1850 (precisely on October 22, now celebrated as the
“Fechner Day”), he did not even mention JNDs and their
subjective equality, because at that time he was not aware

of Weber’s law. As can best be seen from Fechner’s own
account given in Appendix II of the second volume of
Zend-Avesta (1851), he considered the differential for-
mula a precise hypothetical statement about the mathe-
matical dependency between the mental and the physical:

If the strength of the physical activity underlying some men-
tal activity at some given point in space and time is mea-
sured by its energy β (energy understood in the sense of
mechanics), and if its change, assuming an infinitely small
part of time and space, is named dβ, then the accompany-
ing change in the intensity of the mental activity, to be es-
timated by feeling or in consciousness, is not proportional
to the energy change dβ, but to the relative change dβ /β,
and hence expressible by k dβ /β, or by dβ /β itself, if we
put k � 1 once and for all. If the energy of some physical el-
ement at a definite point in space and time is given, then it
will be possible by summation of a continuous series of ab-
solute increments thereof, to end up with the energy of any
other element (or of the same element) in any other point
in space and time; and by corresponding summation of the
accompanying relative increments, i.e., by means of the inte-
gral ∫ dβ /β, to end up with the mental or psychical inten-
sity of the same element, where the mental intensity of the
initial element must be taken as known, because it serves
for the determination of the constant of the integral. Thus,
the required mental intensity γ of the second element will
be γ � log(β /b), where b denotes the value of β for which
γ � 0. (Fechner, 1851; translated by Scheerer, 1987, p. 203)

2.2. Unidimensional Fechnerian scaling. We now
use the refined version of Fechner’s original ideas (FT*)
to construct a systematic theory of Fechnerian scaling
for unidimensional stimulus continua.

We begin by observing (see Figure 7) that the function

is reciprocal to the derivative of the psychometric function

γx( y) � Prob{“y is greater than x”}

computed at its median. That is,

where we continue to assume that the median equals the
reference stimulus. Therefore, instead of presenting Fech-
ner’s differential formula as before,

dφ (x) � c ,

one can rewrite it as

dφ (x) � c dγx(x).

We see that the differential formula simply states that the
infinitesimal subjective difference dφ (x) between x and
x + dx is proportional to the corresponding infinitesimal
change
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dγx(x) � γx(x + dx) � γx(x) � γx(x + dx) � 1⁄ 2

of the psychometric function γx( y). Since the sensation
magnitude function, φ (x), is not independently defined,
nothing prevents one from putting c � 1 and simply iden-
tifying the subjective difference between x and x + dx with

dγx(x) � γx(x � dx) � γ x(x).

This makes both Fechner’s postulate (in its infinitesi-
mal version, FT*) and the differential formula redundant:
They both reduce to a single proposal, to measure the sub-
jective difference between x and x + dx by dγx(x). The Fech-
nerian distance between two stimuli, a and b, then should
be measured as

We suggest that this surprisingly simple approach to
G(a, b) constitutes the essence of Fechnerian scaling for
unidimensional continua.

The integral above can be presented as

where

We observe that, in order for G(a, b) to be well defined,
it is sufficient for F(x) to be finite, positive, and continu-
ous. If these requirements are met, then F(x) above is the
simplest example of what we call the Fechner metric
function, which we now proceed to define in a greater
generality.2

As is demonstrated in Figure 8, it may very well be the
case that the derivative

equals zero or infinity. Put differently, it is possible that
the infinitesimal

γx(x + ∆x) � γx(x), ∆x → 0

has a higher or lower order of infinitesimality than the in-
finitesimal ∆x → 0. In such a case, it would make no
sense to say that the subjective difference between x and
x � dx can be measured by dγx(x), since the two infini-
tesimals are not comeasurable.3 For any given x, how-
ever, there always exists an increasing transformation
Φ[dγx(x)] that is comeasurable with dx:

Φ[γx(x + ∆x) � γx(x)] � O(∆x), ∆x → 0.

This trivially follows from the fact that the difference
γx(x + ∆x) � γx(x) is an increasing function of ∆x in the
vicinity of ∆x � 0.

Let us assume in the following that, in the vicinity of
∆x � 0, the psychometric function is odd-symmetrical,

This assumption (that holds trivially if the function is dif-
ferentiable at ∆x � 0) allows one to confine one’s atten-
tion to positive differentials only,

∆x → 0 +, γx(x + ∆x) � γx(x) → 0 +.

For simplicity, and with little loss of generality, one
may assume that even if γx(x + ∆x) � γx(x) is not directly
comeasurable with ∆x, it is comeasurable with some power
transformation ∆x µ of this differential ( µ > 0, ∆x > 0).
This implies that the transformation Φ[γx(x + ∆x) � γx(x)]
can be taken to be the power function with the reciprocal
exponent, and the comeasurability statement above can
be presented as

To appreciate that this specialization of Φ is very unre-
strictive, observe that it is satisfied whenever γx( y) has a
nonzero finite derivative of some order at y � x: In this
case, µ � m, the lowest integer for which

(see Appendix A1). In a more general context, the possi-
bility of nonpower transformations is discussed in Sec-
tion 7.1, where it is shown that they do not lead to any non-
trivial modifications in the theory.

A considerably more restrictive assumption we make
now is that the exponent µ is one and the same for all
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Figure 8. The slope of the tangent to the psychometric func-
tion �x( y) at p � 1⁄2 may be a positive number (solid dark line),
zero (interrupted line), or infinity (gray line).
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psychometric functions—that is, for all values of x.4 It
follows that, for any stimulus x, the subjective distance
between x and x + dx is comeasurable with (can be mea-
sured by)

We define the Fechner metric function as

its value being, by construction, finite and positive. As-
suming, in addition, that F(x) is continuous, the existence
of the Fechnerian distances

is guaranteed. It is easy to check that G(a,b) is a metric
on the stimulus continuum: It is symmetrical, additive,
and vanishes if and only if a � b.

So far, the construction of the Fechnerian metric has
been predicated on the assumption that the median of a
psychometric function equals the reference stimulus,
γx(x) � 1⁄ 2. In some experimental situations, this may not
be true:

γx
�1(1⁄ 2) � x* ≠ x.

The theory requires no nontrivial emendations to accom-
modate such cases, provided that the relationship between
x* (the medians) and x (the reference stimuli) is one-to-one
(as one should expect it to be for all detectable stimuli).
Indeed, then one can simply relabel the psychometric
functions,

γx( y) � γ *x*( y),

and substitute γ *x*(x* + ∆x*) for γx(x + ∆x) in all formu-
lations:

is finite, positive, and continuous in x*, and

Unless mentioned specifically, we assume in this paper
that such a relabeling has been made wherever necessary,
and then the asterisks have been dropped for simplicity.

2.3. Psychometric functions in a canonical form.
The Fechnerian metric as defined in the previous section
is derived from the set of psychometric functions (in-
dexed by x)

γx( y) � Prob{“y is greater than x”}.

These functions, however, cannot be utilized when deal-
ing with subjectively multiattribute stimuli, which is nor-
mally the case when the stimuli are physically multi-
dimensional and may happen even when the stimuli are
physically unidimensional. It is important, therefore, to

consider the Fechnerian metrics based on psychometric
functions that do not presuppose subjective unidimen-
sionality, such functions as

ψx( y) � Prob{“y is different from x”}

or

ψ~
x( y) � Prob{“distance between x and y

is greater than distance between x and x”}.

Any such function can be interpreted as providing the
probability with which y can be discriminated from x,
with no explicit specification of the subjective attributes
involved. We assume that such a function has a single
global minimum, which can always be made to be achieved
at y � x (by the relabeling argument analogous to that
concluding Section 2.2). We refer to psychometric func-
tions as being in a canonical form if they allow for such
an interpretation and have the global minimum property
just mentioned.

The term canonical form should not be taken to refer to
any particular judgment scheme used in an experiment.
The judgments defining ψx( y) and ψ~ x( y) may lead to a ca-
nonical form directly, but this form can also be obtained,
in a less direct way, from other judgment schemes. Notably,
the psychometric function γx( y) can be brought to a ca-
nonical form by interpreting the quantity

1⁄ 2 + | γx( y) � γx(x) | � | γx( y) � 1⁄ 2 | + 1⁄ 2

as indicating the probability with which y can be discrim-
inated from x and by plotting this probability against y.
This corresponds to the mirror-reflection procedure illus-
trated in Figure 9. For simplicity, a psychometric function
in a canonical form is hereafter always presented as

ψx( y) � Prob{“y is different from x”},
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Figure 9. The canonical form �x( y)can be obtained from the
psychometric function �x( y) by mirror-reflecting its submedian
part with respect to the median.
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whatever the factual judgment scheme and computational
procedure by which this function is obtained.

Clearly, the mirror-reflection procedure is not the only
logically possible way of transforming γx( y) into a ca-
nonical form. We single out this procedure only because
the Fechnerian metric derived from γx( y) according to
the previous section’s computations then coincides with
the Fechnerian metric derived from the canonical trans-
formation ψx( y) of γx( y) according to the computations
presented below. In general, unless empirically shown
otherwise, it should be allowed that different judgment
schemes and different procedures of bringing psycho-
metric functions to a canonical form lead to different Fech-
nerian metrics.

We now proceed to deriving the Fechnerian metric from
ψx( y). We assume that the psychometric functions are
(even-) symmetrical in the vicinity of their minima:

This is the analogue of the odd-symmetry assumption of
Section 2.2. We assume that there is a positive exponent µ,
one and the same for all stimuli x, such that

This is interpreted as justifying the proposal that the sub-
jective distance between x and x � dx be measured by

Figure 10 gives one an idea of the appearance of psycho-
metric functions with different values of the exponent µ.

The Fechner metric function, everywhere finite and
positive, is introduced as

and is assumed to be continuous. The Fechnerian distance

is then well defined and satisfies all requirements to a met-
ric on a stimulus continuum.

Note that the minimum value ψx(x) itself plays no role
in the theory. It may or may not be the same for all x. For
instance, it always equals 1⁄ 2 when ψx(x) is computed from
γx(x) by the mirror-reflection procedure illustrated in Fig-
ure 9, but ψx(x) may vary with x if ψx( y) is obtained by
direct same–different judgments.

One of the most important properties of the Fechnerian
distance is that it does not depend on the physical scale
of measurement. Put more precisely, any two physical
measurements, x and x�, yield one and the same Fechner-
ian metric, provided that they are related by a positive
diffeomorphism—that is, provided that the functions
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x � x(x�), x� � x�(x)

both exist and have continuous positive derivatives. Under
these conditions, it is easy to show that

G�(a�, b�) � G(a, b)

(see Appendix A2). To avoid redundancy, we do not an-
alyze here other important mathematical properties of
the Fechner metric function and the Fechnerian distance.
This analysis is presented in the next section, in the con-
text of multidimensional stimulus spaces.

3. Mathematical Foundations
of Fechnerian Metric

We begin now the construction of a general theory of
Fechnerian scaling, for arbitrary (generally multidimen-
sional) continuous stimulus spaces. The elements of
such a space and associated n-dimensional vectors are
denoted by boldface letters (x, y, u, etc.); these vectors’
components are denoted as, (x1, . . . , xn), ( y1, . . . , yn),
(u1, . . . un), and so on. The superscripts and subscripts
(xi, gij , etc.) are used to follow the traditional contravariant–
covariant conventions of differential geometry, but we uti-
lize no rules or terms of tensor algebra (such as Einstein’s
summation convention). The context should prevent one
from confusing superscripts with exponents. We explain
all mathematical terms we introduce if they fall beyond
the scope of standard multivariate calculus.

3.1. Psychometric functions. Consider an open space
M(n) of n-dimensional stimuli x � (x1, . . . , xn). Let any
stimulus x be associated with a psychometric function
ψx(y) in a canonical form,

ψx(y) � Prob{“y is different from x”}.

This function is assumed to achieve a global minimum at
some point x* and be defined at least in a sufficiently
small open vicinity of this point. Without loss of general-
ity, it can be posited that x* � x (see Figure 3)—that is,

If there is a systematic bias (“constant error”; see Fig-
ure 11), then, as in Sections 2.2–2.3, we assume that x*(x)
is one-to-one, redefine the psychometric function as

ψ*x*(y) � ψx(y),

and then return to the original notation by dropping the
asterisks.

It is often natural to assume, in addition, that the psy-
chometric functions are symmetrical:

ψx(y) � ψy(x).

We need not, however, invoke this property in this paper
(see Section 1.2, d).

3.2. Ray-differentials and ray-derivatives. A ray ini-
tiated at y is defined as y + us, where u is some nonzero
vector (u1, . . . , un), and s assumes all real nonnegative
values (see Figure 4). The ray-differential of ψx(y) at y
along u is defined as

ψx(y + us) � ψx(y), s → 0 +.

We are only interested in the ray-differentials at the min-
imum of the psychometric function, y � x,

ψx(x + us) � ψx(x), s → 0 +.

Obviously, this difference is positive for all nonzero s.
Since, for any given x and u, this difference is an increas-
ing function of s (in a right-hand vicinity of s � 0), there
should exist an increasing transformation Φ vanishing at
zero, such that

Φ[ψx(x + us) � ψx(x)] � O(s), s → 0 +.

In accordance with Section 2.2, we say that the two pos-
itive differentials above are comeasurable. It is important
to observe that the transformation Φ is defined asymp-
totically uniquely in the vicinity of zero: If the comeasur-
ability statement above holds, then it also holds for an-
other transformation Φ* if and only if

lim
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Figure 11. Psychometric functions �x(y) whose global minima at x* are shifted from the positions of reference stimuli,
x. The relabeling procedure �*x*(y) � �x(y) amounts to viewing the positions of global minima as new reference stimuli.
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Using the same reasoning as in Section 2.2, without
much loss of generality, Φ can be chosen to be a power
function, and this is what we assume throughout most of
this paper. That is,

(i) for all x∈Μ (n) and all nonzero direction vectors u,
one can find a positive real µ such that

ψx(x + us) � ψx(x) � O(sµ), s → 0 +,

which can also be written as

or

It is easy to see that there cannot be more than one µ sat-
isfying this requirement: If the double-inequality above
holds, then

We further assume that
(ii) the value of µ is the same for all x∈Μ (n) and all non-

zero direction vectors u. We refer to µ as the psychometric
order of the stimulus space endowed with the psycho-
metric functions ψx(y),

〈x, ψx(y)〉x∈Μ (n),

and we denote this structure as M (n, µ) (see Figures 10 and
12). By abuse of language, we may also refer to µ as the
psychometric order of the set of the psychometric func-
tions ψx(y) (indexed by x). As mentioned in Section 2.2
and also discussed in Section 7.1, the assumption that a
single transformation can be applied to all stimuli and
all directions is by far more restrictive and more critical
for this paper than the assumption that this transforma-
tion is a power function. (In reference to Figure 12, the
single-µ requirement implies that a stimulus space cannot
simultaneously contain, say, the cusped psychometric
function µ � 1 and the flat-bottom psychometric func-
tion µ � 4.)

Finally, we assume that
(iii) the ray-differential ψx(x + us) � ψx(x) is symmetri-

cal with respect to the sense of any given direction vector:

This is a generalization of the odd-symmetry assumption
made in Section 2.2 and the even-symmetry assumption
made in Section 2.3. This property is convenient and rea-
sonable to assume, and it is assumed throughout most of
this paper. In Section 7.2, however, we show that it is not
essential for the theory, and simple modifications of the
Fechnerian metric can be constructed without it.

The equation
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is central for the theory of Fechnerian scaling. It can be
interpreted as saying that an infinitesimally small dis-
similarity between any two points

x, x + uds,

can be measured by (as it is comeasurable with) the cor-
responding infinitesimally small difference

The latter can serve, therefore, as a psychometric distance
between x and x + uds. It is important to observe, how-
ever, that the latter statement also holds, by precisely the
same logic, for the infinitesimal

with any positive k.
3.3. Fechner–Finsler metric function. We call the

function

the (Fechner–Finsler)5 metric function associated with
M (n, µ). (For u � 0, the value of the metric function is zero.)
The postulated properties of the psychometric functions
guarantee that this function is well defined for all stimuli x
and all nonzero direction vectors u in M (n, µ).

Due to the concluding statement of the previous section,
the Fechner–Finsler metric function is only unique up to
positive similarity—that is, it can also be defined as

for any positive k. We set k � 1 for definiteness.
Often, it is convenient to express the metric function as

a ray-derivative of the standardized psychometric function

Obviously, this function has the minimum value of zero
achieved at y � x. The ray-derivative of Ψx(y) at y along
u is defined as

and it is easy to observe that

3.4. Properties of the metric function. In the follow-
ing, it is assumed that the Fechner–Finsler metric func-
tion F(x, u) is sufficiently smooth in u and x. For our
purposes, it is sufficient to assume that, for all nonzero
directions, F(x, u) is C 2 in all arguments (Carathéodory,
1982).6 In accordance with Rund’s (1959) monograph,

however, to connect the theory of Fechnerian scaling with
a developed version of the Finslerian geometry (which is
not critical in the present context), one has to assume a
significantly higher degree of smoothness (e.g., C 5 in all
arguments).

The Fechner–Finsler metric function has the following
properties that follow from the postulated properties of
the psychometric functions and the definition of the met-
ric function.

(FF1) Strict positivity: F(x, u) > 0 for all x and u ≠ 0.
This clearly follows from the fact that ψx(x) is the mini-
mum of the psychometric function.

(FF2) Symmetry: F(x, �u) � F(x, u) for all x, u. This
follows from the symmetry requirement (iii) of Sec-
tion 3.2.

(FF3) Euler homogeneity of the first order: F(x, au) �
aF(x, u) for all x, u, and a ≥ 0. (See Appendix A3.) Note
that Properties FF2 and FF3 can be combined into

F(x, au) � | a | F(x, u).

(FF4) Invariance: The metric function is invariant with
respect to all diffeomorphic transformations of the stim-
ulus space, provided that the directions transform as con-
travariant vectors. This property may appear to be of a
somewhat technical nature, but it is critical for justifying
the notion that Fechnerian distances among stimuli in
M (n, µ) do not depend on their physical measurements
(Sections 3.5–3.6). Consider some diffeomorphic trans-
formations of coordinates,7

xi � xi(x� 1, . . . , x�n), i � 1, . . . , n.

Direction vectors are said to transform as contravariant
tensors if

It is easy to verify that with this correspondence between
(x, u) and (x�, u� ),

ψ� x�
(x� + u�ds) � ψψ� x�

(x�) � ψx(x(x� + u�ds))

� ψx(x) � ψx(x + uds) � ψx(x),

because of which

F(x, u) � F�(x�, u�).

(FF5) Neighborhood positivity: For any ρ > 0, the
quantity

is positive (see Appendix A4). This property is critical
for the proof that the Fechnerian distances defined in
Section 3.6 do form a metric.

Properties FF1–FF5 are sufficient to construct the
Fechnerian metric. We need, however, one additional as-
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sumption in order to connect this metric with the con-
cept of a geodesic line (Section 3.9).

(FF*) Positive regularity: The quantities

gi j (x, u) � , i, j � 1, . . . , n

form a positive-definite matrix.
The positive-definiteness means that

unless ζ 1 � . . . � ζ n � 0. The matrix of gi j (x, u) values
is called the (Finslerian) metric tensor associated with
F(x, u). The positive regular metric tensor is called Rie-
mannian if gi j (x, u) does not depend on u:

gi j (x, u) � gi j (x), i, j � 1, . . . , n.

An important identity that follows from the Euler ho-
mogeneity of the metric function is

which is the Finslerian generalization of the familiar Rie-
mannian identity,

(This identity is commonly written in the form

and dS is referred to as the linear element of the Rieman-
nian geometry.)

3.5. Path length. Consider now two points, a and b, in
the stimulus space, and some piecewise continuously dif-
ferentiable path x(t) connecting them (refer to Figures 5
and 13),

When we wish to make the endpoints explicit, we write
x(t) � ax(t)b. The psychometric value of the change
from x(t) to x(t + dt) is computed as

F(x(t), ẋ(t))dt,

where ̇x(t), the tangent vector of the path at x(t), plays the
role of u, the direction of change. Integration of the quan-
tity above along the path yields

This integral is well defined and can be interpreted as the
(Finslerian) length of the arc x(t) connecting the points a
and b. Observe the following properties:

(ℑ1) ℑ[ax(t)b] > 0 unless x(t) � a � b, in which case
ℑ[ax(t)b] � 0.

(ℑ2) ℑ[ax(t)b] � ℑ[ax[γ (τ)]b] under all positive
diffeomorphic reparametrizations t � γ (t), γ̇ (τ) > 0.

(ℑ3) ℑ[ax(t)b] � ℑ[bx[γ (τ)]a] under all negative dif-
feomorphic reparametrizations t � γ (t), γ̇ (τ) < 0.

(ℑ4) ℑ[ax(t)b] is invariant under all diffeomorphic re-
parametrizations of the stimulus space.

The proof of these statements is given in Appendix A5.
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Figure 13. The Fechner–Finsler function F(x, u) is computed for any point stimulus x and direction u. If the value of
this function is computed at all points x of a (piecewise continuously differentiable) path connecting two points, a and b,
while the directions u are chosen to coincide with tangents ẋ to this path, then the integral of this function is the psy-
chometric length of the path.
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3.6. Fechnerian distance. We define the Fechnerian
distance between a and b as

where all paths are assumed to be piecewise continuously
differentiable. Observe that ℑ[ax(t)b] maps the set of all
paths ax(t)b into the set of nonnegative reals, because of
which the infimum must exist. The Fechnerian distance
has the following properties:

(G1) G(a, b) is invariant under all diffeomorphic repa-
rametrizations of the paths ax(t)b.

(G2) G(a, b) is invariant under all diffeomorphic repa-
rametrizations of the stimulus space.

(G3) G(a, b) is a distance function on the stimulus
space.

(G4) G(a, b) is unique up to positive similarity.

The first two properties follow directly from the corre-
sponding properties of ℑ[ax(t)b]. Property G3 means that
the Fechnerian distance as defined in this section satis-
fies the following three statements:

G(a, b) � G(b, a) (symmetry)

G(a, b) ≤ G(a, c) + G(c, b) (triangle inequality)

G(a, b) � 0 iff a � b (zero distance property).

The proof of these statements is given in Appendix A6.
Property G4 follows from the fact that the metric func-
tion F(x, u) is unique up to positive similarity.

3.7. Uniqueness of psychometric functions induc-
ing a given metric. Property G4 justifies the following
definition: For a given stimulus space, two different sets
of psychometric functions, ψx(y) and ψ�x(y), are called
Fechner-equivalent if they induce Fechnerian metrics re-
lated as

F(x, u) � kF�(x, u).

This equality implies

where µ and µ� are the (generally different) psychometric or-
ders associated with ψx(y) and ψ�x(y). By rewriting this as

ψ�x(x + us) � ψ�x(x) � k µ� [ψx(x + us)

� ψx(x)]
µ�⁄µ + o{s µ�}, s > 0,

and denoting ψ�x(x) � ϕ(x), κµ � µ�, k µ� � K, we come to
the following conclusion: Two sets of psychometric func-
tions, ψx(y) and ψ�x(y), are Fechner-equivalent if and
only if

ψ�x(x + us) � K[ψx(x + us) � ψx(x)]κ

+ ϕ(x) + o{sκ µ}, s > 0,

where K and κ are arbitrary positive constants, and ϕ(x)
is an arbitrary nonnegative function. This criterion of
Fechner-equivalence is utilized in Section 5, in the con-
text of response bias changes.

3.8. Possible relationships between metric func-
tions. It might appear that one could generalize the no-
tion of the Fechner-equivalence by considering the sets of
psychometric functions, ψx(y) and ψ�x(y), whose Fechner–
Finsler metric functions are related by some arbitrary
transformation:

F(x, u) � f [F�(x, u)].

Such sets of psychometric functions, if they existed,
could be termed Fechner-related, even though the Fech-
nerian distances G(a, b) and G�(a, b) computed from them
would not have been generally related by any function.

A simple but remarkable fact is, however, that there
can be no “Fechner-relatedness” other than Fechner-
equivalence, which means that the transformation f in the
equation above cannot be anything but positive similarity:

F(x, u) � f [F�(x, u)] ⇒ F(x, u) � kF�(x, u), k > 0.

The proof of this statement follows directly from the
Euler homogeneity property of the metric functions (see
Appendix A7).

3.9. Fechnerian geodesics. The construction of the
Fechnerian metric G(a, b) in Section 3.6 does not make
use of the positive regularity property of the metric func-
tion, one consequence of this being that G(a, b) need not
exist as the length of a path connecting the two points.8
If we do take into account the positive regularity, then
the theory can be developed further as follows.

A path x(t) is called stationary if it satisfies the Euler–
Lagrange differential equations

A fundamental theorem of variational calculus states
that if x(t) connects a and b, then these equations are a
necessary condition for x(t) to be the shortest (in the Fins-
lerian sense) path connecting the two points (Carathéo-
dory, 1982; Rund, 1959). In general, however, a station-
ary path connecting two given points need not exist, and,
if it exists, it need not provide a global minimum for length
of all allowable paths connecting these points. With the
complete set of assumptions specified in Section 3.4, how-
ever (including the positive regularity property), the fol-
lowing can be proved (Carathéodory, 1982, ch. 16):

(G5) If the stimulus space, M(n), is bounded (i.e., if
| b � a | < Λ for all a, b, and some constant Λ), then any two
points a, b can be connected by at least one stationary line,
and all stationary lines connecting these points will have
the Finslerian length G(a, b).

For unbounded stimulus spaces this theorem holds in
a weaker version:
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(G6) If the stimulus space contains a point o such that

G(x, o) → ∞ as | x � o | → ∞,

then any two points a, b can be connected by at least one
stationary line, and all stationary lines connecting these
points will have the Finslerian length G(a, b).

The meaning of the additional constraint imposed in 
G5 is that, when considering the paths connecting two
given points in order to find the shortest, one can always
confine one’s attention to those paths that lie within a suf-
ficiently large bounded area containing the two points.
This is automatically satisfied if the space itself is
bounded, because of which G5 can be viewed as a conse-
quence of G6.

The antecedent of G6 is the only assumption in this
paper that does not refer to observable (at least in prin-
ciple) properties of psychometric functions. It is not,
therefore, empirically falsifiable, even in principle. The
importance of this fact, however, should not be overesti-
mated. Geodesics are not, strictly speaking, necessary
for the construction of a Fechnerian metric, but, even if
they were, it seems safe to assume that any stimulus
space is bounded: As one moves from a given point in a
stimulus space in any direction, it is inevitable that, be-
yond a certain distance, the stimuli are no longer per-
ceivable. If so, the existence and the desired properties of
the geodesics are guaranteed by G5 alone.

3.10. Perceptual status of geodesics. If the Fechner-
ian geodesics of a stimulus space can be reconstructed
(by computing the Fechner–Finsler functions and solv-
ing the Euler–Lagrange differential equations, analytically
or numerically), one achieves much more than just the
ability to compute Fechnerian distances effectively. A
variety of descriptive geometric concepts (not discussed
here) then can be invoked to characterize and classify
perceptual structures of stimulus spaces. It should be
emphasized, however, that our theory does not imply that
the geodesics (or other geometric descriptors associated
with them) can be in any way perceptually accessible to
the observers or directly mappable on the observers’
judgments: It is not implied, for instance, that the ob-
servers are able to determine whether series of stimuli
fall on a single geodesic or judge whether two stimulus
changes in the directions tangent to a geodesic are par-
allel. The theory is based solely on psychometric func-
tions, the only prerequisite ability of the observers being
that of discriminating (or confusing) different stimuli.

This distinguishes our approach from the only other
theory known to us (Levin, in press) that also aims at gen-
eralizing Fechnerian scaling to continuous stimulus spaces
of arbitrary dimensionality and arbitrary modality. Levin
departs from a generalization of the Riemannian geom-
etry very different from the one our analysis arrives at.
This geometric construct (affinely connected spaces with
autoparallel curves as generalized geodesics) need not be
reviewed here (see, e.g., Kreyszig, 1968, ch. 14). What

is important in the present context is that, in order to re-
construct the principal determinants of this construct
(the symmetrical connection and the torsion tensor parts
of the affine connection), Levin assumes that geodesic
paths in a stimulus space can be recognized and compared
perceptually. Namely, given a stimulus a and a direction
of change u, the observers are assumed to be able to con-
tinuously transform a so that the path of the transforma-
tion x(t) forms the geodesic passing through a in the di-
rection u. Moreover, considering t in x(t) as physical
time, the observers are assumed to be able to perform
this transformation at a “constant perceptual speed,” which
means that the tangents dx(t)/dt along the path are all of
the same subjective length. Finally, the observers are as-
sumed to be able to “review” a finite segment of a geo-
desic path, say, ax(t)b leading from a to b, and given a stim-
ulus c some distance apart from it, to transform this c
along the geodesic running “parallel” to ax(t)b at the same
constant perceptual speed. Although the observers in
Levin’s experiments do produce stimulus transforma-
tions in response to these instructions, it is not obvious
to us that they do this in conformity with Levin’s geomet-
ric interpretation.

In a contradistinction to our approach, Levin (in press)
views discriminability as limited by finite JNDs, and he
treats them as a nuisance factor completely unrelated to
his theory but relegating it to the status of an approximation
only. This makes the logic of his approach subject to the
same internal inconsistency criticism (recognized in
Levin’s paper) as the one directed against Fechner’s orig-
inal theory, in its traditional interpretation (Section 2.1).

4. Special Cases
4.1. Unidimensional Fechnerian scaling. We show

now how the theory of unidimensional scaling developed
in Sections 2.2–2.3 is derived as a special case of the gen-
eral theory presented in Section 3. Recall the definition
and the properties of the standardized psychometric func-
tion Ψx(y) given in Section 3.3. In the unidimensional
case, it becomes

For any psychometric order µ, we have

because of which the metric function can be written as

F(x, u) � ξ (x)| u |, ξ (x) > 0.

The shortest path between a � a and b � b > a is, of
course,

a x(t)b � t, t∈(a, b),

because any other path will have to include the interval
(a, b). As a result, the Fechnerian distance here is
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Suppose, for example, that µ � 1 and (the infinitesimal
version of ) Weber’s law holds:

Then,

G(a, b) � k log .

If µ is not necessarily 1, Weber’s law has the general form

leading to the same logarithmic Fechner law.
Obviously, one can also consider other differential

“laws” (very much like Fechner himself did in his 1860
treatise) to obtain alternatives to the “logarithmic law.”
For example,

leads to

G(a, b) � const � (bα � aα),

the “compressive power function” that Krueger (1989)
proposes as a solution for the controversy related to com-
peting “psychophysical laws.”

4.2. Riemannian metric. Several authors have sug-
gested that the subjective metric of multidimensional con-
tinuous stimulus spaces is Riemannian [which means that
the metric tensor gi j (x, u) does not depend on u] and that
the formula for the Riemannian linear element (see the
end of Section 3.4) can be viewed as a multidimensional
generalization of Fechner’s differential formula. It is es-
pecially apparent in Helmholtz’s (1891) analysis of color
differences (n � 3), where the proposed metric tensor is
modeled after the infinitesimal version of Weber’s law:
Using our present notation,

which corresponds to

Schrödinger (1920) proposed to amend this as

corresponding to

The contemporary CIE recommendations on the color
metric (Robertson, 1978) retain the idea of the Rieman-
nian geometry while replacing theoretical guesses about
the form of the metric tensor, such as Helmholtz’s and
Schrödinger’s, with empirically adapted formulas.

Although some empirical work has been done with
psychometric functions ψx(y) in color spaces (Indow,
1993; Indow & Morrison, 1991; Indow, Robertson, von
Grunau, & Fielder, 1992; Witt & Döring, 1983), no at-
tempt is known to us to systematically derive, at least in
principle, the postulated Riemannian metric from the
shapes of these functions. Nor do we know of an attempt
to achieve a sufficient precision in plotting the psycho-
metric functions in a small vicinity of their minima. As
explained in Section 7.3, if one bases one’s approach on
the shape of psychometric functions, there are no com-
pelling reasons for the assumption that the Fechnerian
metrics must be Riemannian.

4.3. Radial symmetry. Suppose that, with some pa-
rametrization of the stimulus space, the psychometric
functions acquire radial symmetry at their minima with
respect to a certain norm, not necessarily Euclidean or even
quadratic. This means that for all vectors � having the
same norm, | u | � const, the expression

is constant in u.
Denoting

for all unit-norm direction vectors, | u* | � 1, we have

F(x, u) � ξ(x) | u |, ξ (x) > 0.

Consequently,
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and the Fechnerian distance is computed as the infimum
of these integrals.

The Finsler metric tensor in this case is

gi j(x, u) �

� ξ(x)2 � γij(u)ξ (x)2,

which is not generally a Riemannian tensor since it de-
pends on the direction vector u.

4.4. Minkowskian metric. A metric is called Minkow-
skian if the metric function F(x, u) is location-independent,

F(x, u) � F(u).

This is certainly the simplest special case of the Fins-
lerian metric. It corresponds to the situation when all
psychometric functions ψx(y) are essentially identical in
the vicinity of their minima. In this situation, the Euler–
Lagrange differential equations acquire the form

� ci, i � 1, . . . , n,

where ci are arbitrary constants. The solution of these
equations is the straight line passing through two given
points,

x(t) � a + (b � a)t,

and the Fechnerian distance is simply

G(a, b) � F(b � a).

5. Discriminability Versus Response Bias
A variety of experimental manipulations affect psycho-

metric functions in such a way as to change the Fechner-
ian distances computed from them. For some manipula-
tions (such as prolonged preexposure to a particular
stimulus), the changes in the Fechnerian metric are inter-
pretable as reflecting those in the “true perceptual dis-
criminability” of the stimuli, in some intuitive sense. It
has long been recognized in psychophysics, however, that
psychometric functions obtained by means of a given
judgment scheme generally reflect not only the true dis-
criminability but also the decision maker’s differential
predispositions toward the responses to be chosen among.
In the present context, this means that the psychometric
functions can be presented as

Prob{“y is different from x”} � ψx,�(y),

where � is a vector of response bias parameters that, by the
virtue of being so labeled, are believed to have nothing to
do with the true perceptual discriminability of y from x.

As an example, in a broad class of models known as
signal detectability theories (for unidimensional stimulus
continua), the response bias is a real-valued θ (the “cri-
terion”) in the representation

ψx, θ ( y) � T [δx( y) + θ],

where T is a strictly increasing distribution function (e.g.,
the unit normal integral in the most commonly used ver-
sion), and δx( y) is a measure of discriminability of y
from x. If one subscribes to such a model, then one might
find it undesirable that the Fechnerian metric may change
as a result of changes in the response bias parameters
alone.

We consider now two different, from the standpoint of
Fechnerian scaling, approaches to the definition of the di-
chotomy of discriminability versus response bias. Accord-
ing to one of them, which we call Fechner-independent,
this dichotomy can be defined in a variety of ways by
models completely unrelated to Fechnerian scaling. The
goal is, therefore, for any such a model, to construct a
Fechnerian metric that is bias-invariant in the correspond-
ing sense. This goal is achieved with no major complica-
tions if the model’s discriminability function δx(y) is uni-
dimensional and if, for at least one fixed value of the
response bias �, the model provides a way of computing
the difference of the discriminability values

δx(y) � δx(x)

from a complete set of psychometric functions ψx,�(y):

{ψx, �(y)}x, y∈ M
(n) → {δx(y) � δx(x)}x, y ∈M

(n).

The applicability of such a computation is predicated on
the assumption that the value of � remains fixed under
specific experimental conditions.

It seems safe to assume, for a reasonable response bias
model, that the difference δx(y) � δx(x) possesses all the
properties postulated in Sections 3.1–3.4 for ψx(y) �
ψx(x). Because of this, one can define a “true” Fechner–
Finsler metric function,

and construct the “true” Fechnerian metric Gδ (a, b) in pre-
cisely the same way as before.

Thus, in the example with the unidimensional signal de-
tectability theories, we have

δx( y) � δx(x) � T �1[ψx,θ ( y)] � T �1[ψx,θ (x)],

which is obviously independent of θ (if T is the unit nor-
mal integral, this measure is the conventional d ′; Creel-
man, 1967, proposed to use d ′ for Fechnerian scaling in
a manner very similar to the theory presented in Sec-
tion 2). It is easy to check that, for a broad class of well-
behaved transformations T, if the properties postulated
in Sections 3.1–3.4 hold for ψx , θ ( y) � ψx, θ (x), then they
should also hold for δx( y) � δx(x).

According to the second, Fechner-dependent, approach
to the dichotomy of discriminability versus response bias,
the notion of discriminability is simply identified with
that of the Fechnerian metric: If the latter changes, then
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the discriminability changes by definition, whatever the
manipulations that cause the change, or its interpretation
in terms of the underlying psychological processes. The
Fechnerian metric, according to such a position, reflects
the observable differences in response probabilities asso-
ciated with different pairs of stimuli, rather than unob-
servable “perceptual distances.” Thus, all the Fechnerian
distances legitimately collapse to zero if the response “y
differs from x” is given with the same probability to all
pairs of stimuli, because no two stimuli in such a situation
are judged to be more different from each other than ei-
ther of them is from itself.

This approach does not dispense with the notion of a
response bias altogether, but it relegates this notion to
only those transformations of the psychometric functions
that preserve their Fechner-equivalence, in the sense of
Section 3.7:

ψx,�*(x + us) � K[ψx,�(x + us)

�ψx, �(x)]κ + ϕ�, �*(x) + o{sκ µ}, s > 0,

for any two values of the response bias parameters, � and
�*. This expression can be further simplified if one as-
sumes, as seems natural to do, that response bias changes
preserve the psychometric order µ (i.e., κ � 1):

ψx,�*(x + us) � Kψx,�(x + us) + σ�,�*(x) + o{sµ}, s > 0,

where σ�,�*(x) is an arbitrary nonnegative function.
An example of a response bias model that satisfies

this requirement is

ψx,�(y) � T�(δx(y)) + σ�(x),

where δx(y) has the properties postulated in Sections
3.1–3.4, with the additional constraint

δx(x) � 0,

T� are increasing transformations vanishing at zero and
such that

while σ�(x) is an arbitrary nonnegative function.
Given the apparently restrictive character of the Fechner-

dependent approach, it is a surprising and remarkable
fact that the class of the response bias models consistent
with it is very broad: Virtually any conceivable model with
a unidimensional discriminability function δx(y) can be
presented as a special case of the example just given. In
other words, virtually all conceivable models with a uni-
dimensional discriminability function predict that the
classes of psychometric functions corresponding to differ-
ent response bias values are Fechner-equivalent. (The
most familiar example of a response bias model that does
not have a unidimensional discriminability function is the
normal–normal signal detectability model with unequal
variance values: There, the discriminability function is
two-dimensional, one component being the difference of
the means, and another being the ratio of the variances.)

Due to the remarkable fact about the Fechner–Finsler
metric function established in Section 3.8, there can be
no compromise between the Fechner-independent and
Fechner-dependent approaches to the dichotomy of dis-
criminability versus response bias. If Fechner–Finsler
metric functions F�(x, u) and F�*(x, u) corresponding to
two different values of the response bias parameters are
related by any transformation at all,

F�*(x, u) � f�*, � [F�(x, u)],

then this transformation must be positive similarity:

F�*(x, u) � f�* , � [F� (x, u)] ⇒ 

F�*(x, u)� c�* , � F� (x, u), c�* , � > 0.

6. Subjectively Unidimensional
Psychometric Functions

6.1. Theory. Here, we consider the extension of our
theory of Fechnerian scaling to psychometric functions
that represent discriminability of multidimensional stim-
uli with respect to a unidimensional subjective attribute,
l. A classical example (Fletcher & Munson, 1933) is the
discriminability of loudness levels (l ) of pure tones that
differ in both intensity and frequency ( y1, y2). Keeping
this example in mind enables us to address (in the next
section, see also Section 1.1) what is arguably the sharp-
est available experimental critique of Fechner’s original
theory.

As in the case of a unidimensional physical continuum,
the psychometric functions for the subjectively unidi-
mensional discriminations can be obtained both in a ca-
nonical form,

ψx(y) � Prob{“the amount of l in y

is different from the amount of l in x”},

and in noncanonical forms, such as

γx(y) � Prob{“the amount of l in y

is greater than the amount of l in x”}.

In the latter case, we employ the same mirror-reflection
procedure as in Section 2.3 to bring γx(y) to a canonical
form:

As in Section 2.3, we do not assume that different judg-
ment schemes should yield the same Fechnerian metric,
but we assume only that the computational procedure can
be made the same in all cases by presenting the psycho-
metric functions in the form of ψx(y).

The crucial modification that has to be made in the
theory when applied to subjectively unidimensional dis-
criminations is that the Fechnerian distances here are de-
fined between stimulus classes of l-equivalence (within
each of which the stimuli have the same magnitude of l )
rather than between individual stimuli, as in the theory
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considered so far. This modification is necessitated by
one of the three defining properties of a metric: the dis-
tance between two elements of a metric space vanishes
if and only if they are identical (the zero distance property,
Section 3.6). In the case of subjectively unidimensional
discriminations, different stimuli have a zero distance be-
tween them along the designated subjective continuum l,
and, therefore, all such stimuli have to be taken to form
a single element of the metric space.

We begin by assuming that, as is shown in Figure 14,
the global minima of ψx(y) form an (n � 1)-dimensional
hypersurface (a line, for n � 2). Then, the projection Px
of this minimum-level hypersurface onto the stimulus
space is also an (n � 1)-dimensional hypersurface, and
we assume that

(S1) the projections Px cover the stimulus space sim-
ply, which means that any point of the space belongs to
one and only one projection.

Clearly, for any two distinct points x and x′, either
Px � Px ′, or Px ∩ Px ′ is empty. To be able to treat the pro-
jections as elements of a metric space, we have to as-
sume now that

(S2) if Px � Px ′, then (at least) in a small neighborhood
of this projection, ψx(y) � ψx ′ (y).

This establishes a one-to-one correspondence between
the disjoint projections and distinct psychometric func-
tions, at least in sufficiently small vicinities of the
projections.

(It is possible, but not necessary for the present discus-
sion, to employ an analogue of the relabeling argument
of Sections 2.2 and 3.1 to formally ensure that x∈Px or,
equivalently, that Px is the set of all x′ such that Px � Px′.)

Because of Property (S1), the projections of all psy-
chometric functions can be labeled (parametrized) by a
continuous variable, say, λ, assuming its values on some
open interval of reals.9 The projections then can be pre-
sented as Pλ, and the corresponding psychometric func-
tions as ψλ(y). Clearly, this parametrization induces a
mapping Λ of stimuli onto λ values, such that Λ(x) � λ
if and only if Px � Pλ, and, consequently, ψx(y) � ψλ(y)
(in some small vicinity of Pλ).

The construction just described ensures that the pa-
rameter λ can be viewed as a physical correlate of the sub-
jective property l, because of which the projections Pλ
can be viewed as isosensitivity (“equal-l”) hypersurfaces
or as hypersurfaces of l-equivalence (lines, for n � 2).

Consider now some λ and λ + ∆λ, and let ψλ(Pλ + ∆λ)
denote the set of values of the psychometric function
ψλ(y) corresponding to the set of points forming Pλ + ∆λ.
Obviously, ψλ(Pλ ) is then the very minimum-level hy-
persurface of ψλ(y) whose projection is Pλ. We define the
distance Ξ(λ, λ + ∆λ) between probability value sets
ψλ(Pλ) and ψλ(Pλ + ∆λ) as

[It can be safely assumed, or derived from still weaker as-
sumptions, that ψλ(Pλ) consists of a single value—that is,
the minimum values of ψλ(y) are all on the same level.
This requirement is trivially satisfied, of course, if ψλ(y)
is obtained by mirror-reflection from γx(y), as described
earlier. Denoting the single level in question by ψλ, we
have then

This simplification, both convenient and reasonable, is
not, however, critical for the present discussion.]

Now we are in the position to construct the Fechnerian
metric for multidimensional stimuli based on subjectively
unidimensional discriminations. Note that, if in the pre-
ceding discussion one puts n � 1, then (i) the projections
Pλ reduce to points on a unidimensional continuum, (ii) the
physical magnitudes of these points are measured by the
parameter λ, (iii) ψλ(Pλ + ∆λ ) � ψλ(λ + ∆λ) is simply the
probability with which λ + ∆λ is discriminated from λ,
and (iv) Ξ(λ, λ + ∆λ) reduces to the difference between
this probability and ψλ(Pλ) � ψλ(λ). This observation
makes further development rather straightforward. We
assume that (for brevity’s sake, the assumptions and de-
finitions are combined below in one proposition).

(S3) there is a positive real µ, the psychometric order
of the stimulus space endowed with the psychometric
functions ψλ(y), such that the Fechner metric function

is finite and nonzero for all λ.
It only remains to define the Fechnerian distance be-

tween two projections Pa and Pb as
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Figure 14. Possible appearance of a two-dimensional psycho-
metric function �x(y) � Prob{“y is different from x with respect
to l”}; the minima of �x(y) are assumed to form a line whose pro-
jection on the stimulus plane is also a line. The isosensitivity
curves shown in Figure 2 are assumed to be such projections.
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This integral can also be interpreted as the Fechnerian dis-
tance between any two stimuli a and b such that

Λ(a) � a, Λ(b) � b.

The parametrization of the projections by λ is not, of
course, unique, but it is clear, by the same argument as in
Sections 2.3 and 3.5–3.6, that all (diffeomorphically re-
lated) parametrizations lead to the same Fechnerian metric.

6.2. Isosensitivity curves and Fechnerian distances.
Let us return now to the situation considered in Sec-
tion 1.1 and illustrated in Figure 2: two-dimensional stim-
uli compared with respect to a unidimensional subjective
attribute l. To conform with Section 1.1, we switch from
the general notation ( y1, y2) for stimulus physical coor-
dinates to (h, v) (that can be read as “horizontal–vertical”).
Although no empirical work is known to us in which psy-
chometric functions ψλ(y) � ψλ(h, v) have actually been
constructed, it seems reasonable to assume that the pro-
jections Pλ of these functions’ minimum lines can be di-
rectly obtained by sensory-physical matching (Marks,
1974). In a typical version of this procedure, one fixes a
stimulus a � (ha, va ) and the coordinate hb of a stimulus
b = (hb, vb), and one adjusts its other coordinate, vb, so
that a and b appear l-equivalent. Repeating this proce-
dure for different values of hb, one gets a curve of stimuli,
all of which are l-equivalent to a. A family of “equal-l”
curves, like the one shown in Figure 2, is obtained by
varying the coordinate va, which thereby plays the role of
the parameter λ. This being a popular psychophysical
technique, a great variety of equal-l, or isosensitivy, curve
families have been reported in the literature (see, e.g.,
Marks, 1974). Among them of particular interest to us are
equal-loudness (or isosonic) curves for pure tones, where
h is frequency and v is intensity (Fletcher & Munson,
1933), because these curves, taken in conjunction with
JNDs in sound intensity measured at different frequen-
cies (Riesz, 1933), were used in the historically first at-
tempt to empirically test Fechner’s postulate (in its tradi-
tional understanding; see Section 2.1).

As mentioned in Section 1.1, Riesz’s (1933) measure-
ments show that the numbers of the intensity JNDs be-
tween two isosonic curves are different at different fre-
quencies. On the basis of Riesz’s measurements, Stevens
(1936) derives an empirical formula that allows one to
compute, for several frequencies, the number of just-
noticeable intensity increments between zero loudness
(i.e., the absolute threshold of intensity) and any given
loudness level (measured in sones). According to this for-
mula, for any given loudness level, this number of just-
noticeable intensity increments for a 1000-Hz tone is
roughly 2.3 times greater than for a 200-Hz tone and
roughly 1.9 times smaller than for a 4000-Hz tone. Most
psychophysicists consider this an unequivocal refutation

of Fechner’s postulate. Note that the inconsistency found
here is between two comparable judgment schemes: the
“greater than–less than” judgments required for measur-
ing the intensity JNDs and the same–different judgments
required for constructing the isosonic curves. This com-
parability makes the criticism in question considerably
more convincing than any discrepancy found between
Fechnerian distances and those computed from, say, di-
rect magnitude estimates.

The logic of this criticism, however, is flawed. To keep
the discussion interesting, let us assume that the finite
just-noticeable increments in the value of v (refer to Fig-
ure 2) are roughly proportional to the corresponding uni-
dimensional Fechner metric functions (as discussed in
Section 2.1, in the context of relating the infinitesimal
version of Fechner’s postulate to its traditional interpre-
tation). If this assumption is incorrect, the discussion ends
here, because then the number of JNDs cannot be used
as an estimate of the unidimensional Fechnerian dis-
tances. Having made this assumption, the empirical fact
just described indicates that the Fechnerian distance be-
tween a1 and a2 on the unidimensional continuum h � h1
is numerically different from the Fechnerian distance be-
tween b1 and b2 on the unidimensional continuum h �
h2. Recall, however, that the precise meaning of the Fech-
nerian distances here must be derived from unidimensional
psychometric functions ψv(v + ∆v) on these two con-
tinua. These unidimensional distances are logically un-
related to the Fechnerian distances derived from two-
dimensional psychometric functions ψλ(h, v), like the
one shown in Figure 14. According to the theory presented
in the previous section, the Fechnerian distance between
the loudness levels of a1 and a2 in the two-dimensional
space (h, v) must be computed as the Fechnerian distance
between the entire isosonic curves containing the two
points: This guarantees that the Fechnerian distance is the
same for all four pairs (a1, a2), (b1, b2), (a1, b2), (b1, a2).

If this analysis appears insufficiently intuitive, the fol-
lowing informal argument may be helpful. Assume that,
referring to Figures 2 and 15, the Fechnerian distances
were computed between individual points (say, a1 and a2)
rather than the entire equal-l curves containing them. Then,
according to the general theory (Section 3), the distance
between a1 and a2 had to be computed as the infimum of
the length of all paths connecting a1 with a2 in the two-
dimensional space. It is easy to see that this infimum
length must be precisely the same for (a1, a2) and (b1, b2).
Indeed, given any path a1 → a2 connecting these two
points, one can connect b1 with b2 by the path

b1 → a1 → a2 → b2,

in which the first and the third limbs (b1 → a1 and a2 →
b2) are taken along the equal-l curves and have, there-
fore, the Fechnerian length of zero. Since this path has the
same length as a1 → a2, the infimum length for all pos-
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sible paths b1 → b2 cannot exceed the infimum for a1 →
a2. Then, by symmetry, the two infima must coincide.

7. Conclusion
7.1. Comeasurability in the small. The central no-

tion in our theory of Fechnerian scaling is that of the co-
measurability in the small, of the distance s between stim-
uli x and x + us with the (generally transformed) distance
between the corresponding psychometric values, ψx(x)
and ψx(x + us):

Φ[ψx(x + us) � ψx(x)] � O(s), s → 0 +.

As explained in Section 3.2, such a transformation can al-
ways be found for a given stimulus x and a given (nonzero)
direction u. It is not logically necessary, however, that this
transformation be the same for all stimuli and all direc-
tions. The assumption that this is de facto the case is crit-
ical for the theory, because it enables one to say that the
subjective values of the infinitesimally small distances
in a stimulus space can be measured by the differentials

Φ[ψx(x + us) � ψx(x)], s → 0 +.

Psychometric functions are based on the counting of
cases when x + us is judged to be different from x, be-
cause of which the differentials of psychometric values
are completely independent of the physical characteris-
tics of x and the measurement procedures by which the
coordinates of x are computed. Fechnerian scaling can
be said to be providing a universal yardstick by which to

measure subjective distances among stimuli without re-
gard to how they have been measured physically. This
yardstick is utilized by, first, introducing the Fechner–
Finsler function

then deriving a subjective (or psychometric) distance be-
tween any two points in the stimulus space,

and, finally, proving that G(a, b) is a valid metric in the
stimulus space, provided F(x, u) is endowed with suit-
able properties (such as smoothness and symmetry). See
Section 3 for details.

It is easy to understand why it is critical that the trans-
formation Φ be the same throughout all points and di-
rections in a stimulus space. The logic of the comeasur-
ability statement allows for the transformation Φ to be
multiplied by an arbitrary positive constant:

Φ[ψx(x + us) � ψx(x)] � O(s), s → 0+

+ ⇔ kΦ[ψx(x + us) � ψx(x)] � O(s), s → 0 +.

If a single transformation that applies to all stimuli and
directions can be chosen, then one can set the coefficient k
equal to one and the same constant (say, unity) everywhere.
Then the Fechner–Finsler function is defined uniquely,
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Figure 15. Illustration for the informal argument of Section 6.2. The isosensitivity curves are taken from Fig-
ure 2; A and B are subjective lengths of the vertical segments a1 → a2 and b1 → b2, respectively. If B > A, then
B cannot be the Fechnerian distance between b1 and b2, because, among all possible paths connecting b1 and
b2 (right panel), there is at least one (bottom panel) whose length is less than B. The argument is informal be-
cause one cannot speak of distances if they vanish between nonidentical points.
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and the same is true for the corresponding Fechnerian
metric:

If, however, there is no universally applicable single trans-
formation Φ, then the notion of a common scaling factor
becomes meaningless, and one is free to define different
similarity transformations for different stimuli and direc-
tions. The Fechner–Finsler function then, rather than be-
ing multiplied by an arbitrary positive coefficient, can now
be multiplied by an arbitrary positive function,

k(x, u) F(x, u),

which is equivalent to saying that the Fechner–Finsler
function itself is arbitrary.

We have assumed throughout this paper that the trans-
formation of the psychometric differentials that makes
them comeasurable with the transition from x to x + us
is a power function,

As explained in Section 2.2, this assumption is very un-
restrictive, which can be easily appreciated on observing
that it is satisfied whenever, at s � 0, ψx(x + us) has a
nonzero finite derivative of some order with respect to s
(in which case the lowest order for which this is true is
the psychometric order µ). Power transformations, how-
ever, are not applicable universally. As an example, if

ψx(x + us) � ψx(x) � O(s1⁄ s), s → 0 +,

then any power transformation of the psychometric dif-
ferential has a higher degree of infinitesimality than s.

A careful inspection shows that no assumptions or de-
rivations constituting our theory are critically based on
the choice of power transformations and that the theory
can be rewritten with no further modifications if the power
transformations are replaced everywhere with an arbi-
trary transformation Φ. The only and minor exception is

the criterion of Fechner-equivalence introduced in Sec-
tion 3.7 and used in Section 5. The initial formulation,

can be trivially replaced with

but the subsequent reformulations derived in Sections 3.7
and 5 make use of power functions’ properties. One does
not, however, lose any substantive points by dispensing
with these reformulations.

7.2. Fechnerian metric without symmetry. Another
constraint that has been assumed to hold throughout 
the paper but is not logically necessary for the construc-
tion of the Fechnerian metric is the symmetry assump-
tion FF2 of Section 3.4. The following is a sketch of the
theory that does not assume the symmetry. Refer to 
Figure 16.

The main difference caused by dropping the symmetry
assumption is that Property ℑ3, saying that the Finsler-
ian length of a path is independent of the sense of travers-
ing it, holds no longer. One can remedy this situation by
redefining the Finslerian length ℑ[ax(t)b] while preserv-
ing the definition of the Fechnerian distance as the infi-
mum of these values. The simplest way is, of course, to put

ℑ*[ax(t)b] � max{ℑ[ax(t)b], ℑ[bx(t)a]}.

Obviously,

ℑ*[ax(t)b] � ℑ*[bx(t)a],

and if the symmetry constraint is satisfied, ℑ*[ax(t)b] re-
duces to ℑ[ax(t)b].
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Figure 16. Asymmetric psychometric functions with different values of µ in a small vicinity of their global
minima (vertical cross sections through the minima).
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Another way is to define ℑ*[ax(t)b] as the length of a
closed path ax(t)b containing the two points and traversed
in a certain direction taken to be positive (see Figure 17):

Again, this approach guarantees

ℑ*[az(t)b] � ℑ*[bz(t)a].

In the symmetrical case, this quantity reduces to 2ℑ[ax(t)b]
(because of which it may be desirable to define the
ℑ*[az(t)b] as the half-length of the closed path containing
the two points).

7.3. Why not just Riemannian? The Fechnerian met-
ric constructed in our theory is mathematically Finslerian.
By definition (Section 3.4), it becomes Riemannian if and
only if the metric tensor

gi j(x, u) � , i, j � 1, . . . , n

at any point x of a stimulus space does not depend on the
direction u:

gi j(x, u) � gi j (x), i, j � 1, . . . , n.

Since the Riemannian geometry is by far better known
than the Finslerian one, at least in psychophysical appli-
cations (see Section 4.2), the question arises: Why do we
not simply posit that the metric tensor gij(x, u) is direction-
independent and thereby confine our analysis to the Rie-
mannian metric only? After all, one might say, would not
such an assumption be as innocuous as the smoothness
conditions that we impose on the shape of the psychomet-
ric functions ψx(y) and on the metric function F(x, u)?

The answer to this question does not lie in our wish to
be as general as possible: More general structures than the
Finslerian geometry are readily available. The essential
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Figure 17. A closed path containing points a and b and tra-
versed in a certain direction taken to be positive. Its psychomet-
ric length is computed in the same way as in Figure 13.

Figure 18. Psychometric functions in a small vicinity of their minima with different shapes of the vertical cross sec-
tions through their minima (left margin) and horizontal cross sections near their minima (upper margin). See Sec-
tion 7.3 for details.
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point is that, unlike Helmholtz (1891) and Schrödinger
(1920), we do not depart from the assumption that the
subjective metric of a stimulus space has any particular
geometric structure, and geometric concepts, such as
metric tensors and geodesics, are not theoretical primi-
tives of our analysis. Rather we depart from the observable
psychometric functions and from the idea of measuring
infinitesimal changes in stimuli by the (transformed) psy-
chometric differentials. We introduce a function F(x, u)
that allows us to do this measuring, and it turns out to be
the metric function of the Finslerian geometry. To make
this function theoretically manageable, we impose on it
certain regularity conditions, such as the assumption that
F(x, u) is differentiable sufficient number of times with
respect to its arguments. There is indeed no obvious dan-
ger in making such smoothness constraints arbitrarily
strong: It would have been relatively innocuous, for in-
stance, to assume that F(x, u) is infinitely differentiable
in all arguments.

The situation, however, is very different if one postu-
lates the direction-independence of the metric tensor
gij(x, u). This postulate imposes constraints on the shape
of the psychometric functions that cannot be a priori jus-
tified by any substantive or mathematical arguments be-
yond one’s sheer desire to ensure that the resulting Fech-
nerian metric be Riemannian. Figure 18 illustrates this
point. The two-dimensional psychometric functions ψx(y)
shown are grouped into columns according to the shape
of the horizontal cross sections made near their minima
and into rows according to the psychometric order µ of
the stimulus space (we return here to the power function
specialization of the transformation Φ). The psychome-
tric order determines the shape of the vertical cross sec-
tions made through the minima of the psychometric
functions. Placing, for simplicity, the reference stimuli at
the origin,

x � (0, 0), ψ0, 0(0, 0) � 0,

and renaming y � ( y1, y2) into (h, v), the analytic expres-
sions for these psychometric functions are

where the superscript at ψ refers to the column and µ
refers to the row (note that all the superscripts at h and v
are exponents). The Fechner–Finsler metric functions

F(x, u) � F[(0, 0), (u1, u2)]

can be obtained from these formulas by simply replacing
(h, v) with (u1, u2) and putting µ � 1. They do not, of

course, depend on the psychometric order and are shared
by all psychometric functions belonging to the same
column.

It is easy to verify that the metric tensor gi j(x, u) com-
puted from these metric functions is direction-independent
for the columns A and B, but not for C and D. This implies
that the Fechnerian metric is Riemannian for a stimulus
space whose psychometric functions are, say, of the shape

(column B, µ � 1⁄ 2), whereas it is not Riemannian if the
shape is, say,

(column D, µ � 2). In polar coordinates, if one expresses
the value of the psychometric function ψ(0, 0)(h, v) through
the length r and angle α of the vector (h, v), these two
shapes are described by, respectively,

We can think of no reason for declaring a priori that only
the former but not the latter may exist empirically. Note
that all the psychometric functions and the corresponding
Fechner–Finsler functions in our example are equally
“well-behaved”: They are all infinitely differentiable at
nonzero values of their arguments, while the degree of
smoothness at the minima of the psychometric functions
is determined solely by the psychometric order µ and has
nothing to do with the difference between the column
pairs A–B and C–D.

7.4. Discrimination schemes, estimated distances,
and Fechnerian scaling. A careful examination of the
assumptions underlying Fechnerian scaling (Sections 3
and 6) shows that all of them refer to observable proper-
ties of psychometric functions and can, at least in prin-
ciple, be shown to be false.10 Most of them, however, are
properties of infinitesimally small areas of psychometric
functions, and, as stated in Section 1.3, their corroboration
may require very large experiments and additional tech-
nical assumptions. Moreover, it has been shown that some
of the underlying assumptions of the theory (power trans-
formations, symmetry) can be relaxed and generalized
with no serious consequences. Therefore, in Section 1.3,
we define the main intended contribution of our theory
in terms of conceptual clarity rather than falsifiable pre-
dictions. We believe that a century and a half of the con-
tinuing controversy surrounding Fechnerian scaling, with
a good deal of repetition and flawed reasoning involved,
testifies to the importance of striving to discuss the issues
in clear and rigorous terms. This is where lies the prin-
cipal value of such landmarks in the history of the con-
troversy as Falmagne (1971, 1985), Luce and Edwards
(1958), and Pfanzagl (1962).

We think that the ultimate usefulness of our approach
to Fechnerian scaling hinges not so much on the empiri-
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cal corroboration of its underlying assumptions (which
is, of course, a necessary condition) as on the scope and
diversity of the experimental paradigms whose outcomes
can be related to Fechnerian distances in a lawful fash-
ion. It has been repeatedly stated in this paper, for in-
stance, that different discrimination judgments may lead
to different Fechnerian metrics on one and the same stim-
ulus space. This does not mean, however, that they have
to be unrelated, and empirically testable models may be
constructed as predicting particular relationships among
(perhaps the identity of) Fechnerian metrics derived from
different classes of psychometric functions. Lawful rela-
tionships may also be expected to exist between Fech-
nerian metrics derived from psychometric functions and
outcomes of other discriminability-related measure-
ments (such as the methods of limits and adjustments).
Such relationships would have enormously simplified
the computation of Fechnerian distances and, among
other things, would have made higher dimensional stim-
ulus spaces accessible to practical experimentation.

It will also be important to find out whether Fechnerian
distances can be shown to underlie subjective estimates
of large dissimilarities among stimuli (as those obtained
by multidimensional scaling techniques). Could, for ex-
ample, such a subjective dissimilarity measure between
a and b be a function of G(a, b) or of G(a, b) taken in
conjunction with Fechnerian distances G(a, o) and G(b, o)
from a fixed point o in the stimulus space? Such relation-
ships too may be targeted by empirically falsifiable mod-
els, very much in the spirit of the admittedly naive but in-
genious derivation of Stevens’s power function from the
equality of two Fechner’s logarithmic functions (see Baird,
1997, pp. 92–95; Ekman, 1964; Laming, 1997, ch. 8; Luce
& Galanter, 1963). A sufficiently rich network of empir-
ically testable relationships among Fecherian metrics de-
rived from a variety of discrimination schemes and large
dissimilarity estimates may conceivably lead to a rigor-
ous theory of true (without quotation marks) subjective
distances, thereby achieving the ultimate aim of Fech-
ner’s seminal endeavor.
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NOTES

1. The reader is reminded that if α(x) → 0, β(x) → 0 (as x → x0 ), then
one writes β � o(α) to designate that β(x) /α(x) → 0, or α(x) /β(x) →
± ∞ (as x → x0), and one says that β has a higher order of infinitesi-
mality than α.

2. In Section 3, this concept is further generalized into that of the
Fechner–Finsler metric function.

3. We remind the reader that if α(x) → 0, β(x) → 0 (as x → x0 ), then
one writes β � O(α) to designate that β(x) / α(x) tends to a finite
nonzero value (as x → x0), and one says then that the two infinitesimals
are of the same order of infinitesimality. If the limit of β(x) /α(x) is a
positive number, then we call the two infinitesimals comeasurable (at
x � x0). Obviously, for nonnegative infinitesimals, β � O(α) implies
comeasurability.

4. If we did not specialize the transformation Φ, the assumption
would have been that Φ, whatever it might be, is one and the same for
all psychometric functions.

5. After P. Finsler, who proposed a generalization of Riemannian
geometry in 1918 (see Rund, 1959). Obviously, the term Fechner–
Finsler does not imply a collaboration or parallel discovery. Rather it re-
flects the fact that we deal with Finsler’s metric functions of a special
origin, computed from psychometric functions, and with a special pur-
pose, to compute Fechnerian distances. Unlike in abstract geometry, the
metric function in our theory is not a conceptual primitive, and its most
fundamental properties (the Euler homogeneity, positivity, and invari-
ance, considered later) are derived from the properties of the psycho-
metric functions, rather than postulated.

6. Recall that a function is called Cr if it has continuous partial de-
rivatives of the rth order.

7. Diffeomorphic transformation means a one-to-one transformation
with a nonvanishing Jacobian and such that both the transformation and
its inverse are (at least) C1.

8. This does not mean that, without the assumption of positive regu-
larity, one cannot compute G(a, b) as the infimum of a series of path
lengths: Under certain conditions, one can in fact effectively construct
such a sequence and approximate its limit. See, as one possible approach,
the discussion of the “direct methods of variational calculus” in Gelfand
and Fomin (1963, ch. 8).

9. Recall from Section 3.1 that the stimulus space is always consid-
ered an open set, in order to ensure that any point can serve as reference
stimulus for a psychometric function. This implies that the interval of
λ values is open.

10. With the exception of the antecedent property of G5, in Sec-
tion 3.9, which is, however, of minor importance, for the reasons stated
at the end of Section 3.9.

APPENDIX
Technical Comments and Proofs

A1 (Section 2.2)
This can be shown by Taylor-expanding γx(x + ∆x) � γx(x) and

observing that

if all derivative of lower orders vanish.

A2 (Section 2.3)
Indeed, transforming x → x� and putting

ψ� x�
( y�) � ψx( y),

we have

because of which

A3 (Section 3.4)
The Euler homogeneity follows from

A4 (Section 3.4)
The neighborhood positivity can be proved as follows. If, for

a given point y, one considers all directions u confined to the
Euclidean sphere

then F(y, u) > 0 on a closed set of u values, and

It follows that on a closed Euclidean ball | y � x | ≤ ρ, ρ > 0,

A5 (Section 3.5)
Property ℑ1 follows from the fact that F(x(t), ẋ(t)) is non-

negative, so that ℑ[ax(t)b] � 0 implies F(x(t), ẋ(t)) � 0 for all t,
which is only possible if ẋ(t) � 0, which in turn is only possible
if x(t) � a = b.

Property ℑ2 follows from the Euler homogeneity (FF3),

F(x[γ (τ)], γ̇ (τ)ẋ[γ (τ)]̇ ) = γ̇ (τ)Ḟ(x[γ (τ)]̇, ẋ[γ (τ)]̇,

because of which

Property ℑ3 follows from FF3 and the symmetry property
(FF2):
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Property ℑ4 follows from the invariance property of the met-
ric function (FF4) on observing that tangent vectors of a curve
always transform as contravariant vectors,

A6 (Section 3.6)
Property G3 is proved as follows.
Symmetry. Under an arbitrarily chosen negative diffeomor-

phism t � γ (τ), γ̇ (t) < 0, any path ax(t)b is in a one-to-one corre-
spondence with the path bx(γ (τ))a that has the same value of ℑ.
Therefore, the infima for the two sets, {ax(t)b} and {bx(γ (τ))a},
coincide, and since these sets include all possible piecewise
continuously differentiable paths from a to b and from b to a,
respectively, we have

G(a, b) � G(b, a).

Triangle inequality. Suppose that for some points a, b, c,

Then one should be able to find paths ax(t)b, ay(t)c , and cz(t)b
whose ℑ values are sufficiently close to the corresponding in-
fima, so that

ℑ[ax(t)b] > ℑ[ay(t)c] + ℑ[cz(t)b].

By three positive diffeomorphic transformations, the domains of
the parameter t in the three paths can be made to be (a, b), (a, c),
and (c, b), respectively, with a < c < b. Then the concatenation of
ay(t)c, with cz(t)b forms a path ax*(t)b, which is piecewise con-
tinuously differentiable and

ℑ[ax*(t)b] < ℑ[ax(t)b].

Since ℑ[ax(t)b] can be chosen arbitrarily close to

the inequality above implies

which is self-contradictory. We conclude that

G(a, b) ≤ G(a, c) + G(c, b).

Zero distance property. That

G(a, b) � 0 if a � b

is obvious. To prove the reverse, assume that a ≠ b, but G(a, b) �
0. Then there must exist a sequence of curves

ax(k)(l )b, k � 1, 2, . . . ,

such that

where l is chosen to represent the Euclidean length of the arc
measured from point a, L(k) being the Euclidean length of the
entire path. With this choice of the curve parameter,

which follows from the obvious identity

One can therefore invoke Property FF5 of Section 3.4 to state that

ερ(a) > 0

for a closed ball centered at a with a radius

ρ < | b � a |.

Any path ax(k)(l )b must puncture the sphere of the ball. Denot-
ing the Euclidean length of the arc of ax(k)(l )b contained within
the ball by l(k), we must have

This is, however, impossible, because

The proof of G3 is complete.

A7 (Section 3.8)
For any positive a, the identity

F(x, au) � f [F�(x, au)]

implies

aF(x, u) � f [aF�(x, u)],

which can also be written as

af [(F�(x, u)] � f [aF�(x, u)].

Putting F�(x, u) � 1, we get

af (1) � f (a),

and the proof obtains by denoting f (1) � k and observing that it
must be positive.
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